灾区设备对设备通信的最佳无人机飞行路径

Evander Christy, R. P. Astuti, Budi Syihabuddin, B. Narottama, Obed Rhesa, F. Rachmawati
{"title":"灾区设备对设备通信的最佳无人机飞行路径","authors":"Evander Christy, R. P. Astuti, Budi Syihabuddin, B. Narottama, Obed Rhesa, F. Rachmawati","doi":"10.1109/ICSIGSYS.2017.7967064","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the usage of Unmanned Aerial Vehicle (UAV) as a flying mobile base tower station for discovering Device-to-Device (D2D) devices in the disaster area. In a disaster area, energy consumption of both devices and network become an important constraint. Therefore, there is a need to establish wireless network communication in large area rapidly under the condition of infrastructure failure. The previous works does not calculate the energy consumption of the UAV and consider the use cases of UAV flight path for specific disaster condition, e.g. flood, earthquake, etc. The objective of this paper is to provide UAV flying paths that can adapt according to disaster condition which satisfy the UAV energy constraint. We enhance four schemes for the UAV flying paths: O-path, Rectangular path, ZigZag-path, and S-path. This enhancement reduces the flight path gap area and lead the increasing of covered area. To examine the best UAV flight path for certain disaster cases, several simulations were performed and discussed. The results show that for distributed damage pattern, the optimum UAV flying pattern is an S - path because of its large coverage area (covering around 80 percent of total devices in altitude 100 m). Otherwise, for centralized damage pattern, the optimum UAV flying patterns are O, Rectangular, and Zigzag path because of its short flight duration and less energy consumption (eight times smaller than the S - path in altitude 100 m).","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Optimum UAV flying path for Device-to-Device communications in disaster area\",\"authors\":\"Evander Christy, R. P. Astuti, Budi Syihabuddin, B. Narottama, Obed Rhesa, F. Rachmawati\",\"doi\":\"10.1109/ICSIGSYS.2017.7967064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the usage of Unmanned Aerial Vehicle (UAV) as a flying mobile base tower station for discovering Device-to-Device (D2D) devices in the disaster area. In a disaster area, energy consumption of both devices and network become an important constraint. Therefore, there is a need to establish wireless network communication in large area rapidly under the condition of infrastructure failure. The previous works does not calculate the energy consumption of the UAV and consider the use cases of UAV flight path for specific disaster condition, e.g. flood, earthquake, etc. The objective of this paper is to provide UAV flying paths that can adapt according to disaster condition which satisfy the UAV energy constraint. We enhance four schemes for the UAV flying paths: O-path, Rectangular path, ZigZag-path, and S-path. This enhancement reduces the flight path gap area and lead the increasing of covered area. To examine the best UAV flight path for certain disaster cases, several simulations were performed and discussed. The results show that for distributed damage pattern, the optimum UAV flying pattern is an S - path because of its large coverage area (covering around 80 percent of total devices in altitude 100 m). Otherwise, for centralized damage pattern, the optimum UAV flying patterns are O, Rectangular, and Zigzag path because of its short flight duration and less energy consumption (eight times smaller than the S - path in altitude 100 m).\",\"PeriodicalId\":212068,\"journal\":{\"name\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGSYS.2017.7967064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

在本文中,我们提出使用无人机(UAV)作为飞行的移动基站来发现灾区的设备对设备(D2D)设备。在灾区,设备能耗和网络能耗都成为一个重要的制约因素。因此,需要在基础设施故障的情况下快速建立大面积的无线网络通信。之前的工作没有计算无人机的能耗,也没有考虑无人机飞行路径在特定灾害条件下的用例,如洪水、地震等。本文的目标是提供满足无人机能量约束的可适应灾害条件的无人机飞行路径。针对无人机的飞行路径,提出了四种改进方案:o型路径、矩形路径、之字形路径和s型路径。这种增强减小了航迹间隙面积,导致覆盖面积增大。为了检验无人机在特定灾害情况下的最佳飞行路径,进行了多次仿真并进行了讨论。结果表明:对于分布式毁伤模式,无人机的最佳飞行模式是覆盖面积大的S型路径(覆盖100 m高度总装置的80%左右),而对于集中式毁伤模式,无人机的最佳飞行模式是O型、矩形和之字形路径,因为它们的飞行时间短,能耗低(比100 m高度的S型路径小8倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimum UAV flying path for Device-to-Device communications in disaster area
In this paper, we propose the usage of Unmanned Aerial Vehicle (UAV) as a flying mobile base tower station for discovering Device-to-Device (D2D) devices in the disaster area. In a disaster area, energy consumption of both devices and network become an important constraint. Therefore, there is a need to establish wireless network communication in large area rapidly under the condition of infrastructure failure. The previous works does not calculate the energy consumption of the UAV and consider the use cases of UAV flight path for specific disaster condition, e.g. flood, earthquake, etc. The objective of this paper is to provide UAV flying paths that can adapt according to disaster condition which satisfy the UAV energy constraint. We enhance four schemes for the UAV flying paths: O-path, Rectangular path, ZigZag-path, and S-path. This enhancement reduces the flight path gap area and lead the increasing of covered area. To examine the best UAV flight path for certain disaster cases, several simulations were performed and discussed. The results show that for distributed damage pattern, the optimum UAV flying pattern is an S - path because of its large coverage area (covering around 80 percent of total devices in altitude 100 m). Otherwise, for centralized damage pattern, the optimum UAV flying patterns are O, Rectangular, and Zigzag path because of its short flight duration and less energy consumption (eight times smaller than the S - path in altitude 100 m).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of massive MIMO transceiver antenna for full-duplex single-channel system (in case of self interference effect) The development of IoT LoRa: A performance evaluation on LoS and Non-LoS environment at 915 MHz ISM frequency On the design of LDPC-based Raptor codes for single carrier Internet of Things (SC-IoT) Benchmark data set for glaucoma detection with annotated cup to disc ratio Design of LDGM-based Raptor Codes for broadband Internet of Things using EXIT chart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1