基于自适应金字塔和子水平集分析的自动质量分割

Fei Ma, M. Bajger, M. Bottema
{"title":"基于自适应金字塔和子水平集分析的自动质量分割","authors":"Fei Ma, M. Bajger, M. Bottema","doi":"10.1109/DICTA.2009.47","DOIUrl":null,"url":null,"abstract":"A method based on sublevel sets is presented for refining segmentation of screening mammograms. Initial segmentation is provided by an adaptive pyramid (AP) scheme which is viewed as seeding of the final segmentation by sublevel sets. Performance is tested with and without prior anisotropic smoothing and is compared to refinement based on component merging. The combination of anisotropic smoothing, AP segmentation and sublevel refinement is found to outperform other combinations.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"99 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Automatic Mass Segmentation Based on Adaptive Pyramid and Sublevel Set Analysis\",\"authors\":\"Fei Ma, M. Bajger, M. Bottema\",\"doi\":\"10.1109/DICTA.2009.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method based on sublevel sets is presented for refining segmentation of screening mammograms. Initial segmentation is provided by an adaptive pyramid (AP) scheme which is viewed as seeding of the final segmentation by sublevel sets. Performance is tested with and without prior anisotropic smoothing and is compared to refinement based on component merging. The combination of anisotropic smoothing, AP segmentation and sublevel refinement is found to outperform other combinations.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"99 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种基于子水平集的乳房x线筛查图像精细分割方法。初始分割由自适应金字塔(AP)方案提供,该方案被视为子层次集最终分割的种子。测试了各向异性平滑和非各向异性平滑的性能,并与基于组件合并的细化进行了比较。发现各向异性平滑、AP分割和子级细化的组合优于其他组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Mass Segmentation Based on Adaptive Pyramid and Sublevel Set Analysis
A method based on sublevel sets is presented for refining segmentation of screening mammograms. Initial segmentation is provided by an adaptive pyramid (AP) scheme which is viewed as seeding of the final segmentation by sublevel sets. Performance is tested with and without prior anisotropic smoothing and is compared to refinement based on component merging. The combination of anisotropic smoothing, AP segmentation and sublevel refinement is found to outperform other combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1