视觉语音识别中协方差路径的率不变比较

Jingyong Su, Anuj Srivastava, F. Souza, Sudeep Sarkar
{"title":"视觉语音识别中协方差路径的率不变比较","authors":"Jingyong Su, Anuj Srivastava, F. Souza, Sudeep Sarkar","doi":"10.1109/NCVPRIPG.2013.6776200","DOIUrl":null,"url":null,"abstract":"An important problem in speech, and generally activity, recognition is to develop analyses that are invariant to the execution rates. We introduce a theoretical framework that provides a parametrization-invariant metric for comparing parametrized paths on Riemannian manifolds. Treating instances of activities as parametrized paths on a Riemannian manifold of covariance matrices, we apply this framework to the problem of visual speech recognition from image sequences. We represent each sequence as a path on the space of covariance matrices, each covariance matrix capturing spatial variability of visual features in a frame, and perform simultaneous pairwise temporal alignment and comparison of paths. This removes the temporal variability and helps provide a robust metric for visual speech classification. We evaluated this idea on the OuluVS database and the rank-1 nearest neighbor classification rate improves from 32% to 57% due to temporal alignment.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate-invariant comparisons of covariance paths for visual speech recognition\",\"authors\":\"Jingyong Su, Anuj Srivastava, F. Souza, Sudeep Sarkar\",\"doi\":\"10.1109/NCVPRIPG.2013.6776200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in speech, and generally activity, recognition is to develop analyses that are invariant to the execution rates. We introduce a theoretical framework that provides a parametrization-invariant metric for comparing parametrized paths on Riemannian manifolds. Treating instances of activities as parametrized paths on a Riemannian manifold of covariance matrices, we apply this framework to the problem of visual speech recognition from image sequences. We represent each sequence as a path on the space of covariance matrices, each covariance matrix capturing spatial variability of visual features in a frame, and perform simultaneous pairwise temporal alignment and comparison of paths. This removes the temporal variability and helps provide a robust metric for visual speech classification. We evaluated this idea on the OuluVS database and the rank-1 nearest neighbor classification rate improves from 32% to 57% due to temporal alignment.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音识别和一般活动识别的一个重要问题是开发对执行率不变的分析。我们引入了一个理论框架,提供了一个参数化不变度量来比较黎曼流形上的参数化路径。将活动实例视为协方差矩阵黎曼流形上的参数化路径,我们将该框架应用于图像序列的视觉语音识别问题。我们将每个序列表示为协方差矩阵空间上的路径,每个协方差矩阵捕获一帧中视觉特征的空间变异性,并同时进行成对的时间对齐和路径比较。这消除了时间的可变性,并有助于为视觉语音分类提供一个健壮的度量。我们在OuluVS数据库上评估了这个想法,由于时间对齐,排名1的最近邻分类率从32%提高到57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rate-invariant comparisons of covariance paths for visual speech recognition
An important problem in speech, and generally activity, recognition is to develop analyses that are invariant to the execution rates. We introduce a theoretical framework that provides a parametrization-invariant metric for comparing parametrized paths on Riemannian manifolds. Treating instances of activities as parametrized paths on a Riemannian manifold of covariance matrices, we apply this framework to the problem of visual speech recognition from image sequences. We represent each sequence as a path on the space of covariance matrices, each covariance matrix capturing spatial variability of visual features in a frame, and perform simultaneous pairwise temporal alignment and comparison of paths. This removes the temporal variability and helps provide a robust metric for visual speech classification. We evaluated this idea on the OuluVS database and the rank-1 nearest neighbor classification rate improves from 32% to 57% due to temporal alignment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1