Jingyong Su, Anuj Srivastava, F. Souza, Sudeep Sarkar
{"title":"视觉语音识别中协方差路径的率不变比较","authors":"Jingyong Su, Anuj Srivastava, F. Souza, Sudeep Sarkar","doi":"10.1109/NCVPRIPG.2013.6776200","DOIUrl":null,"url":null,"abstract":"An important problem in speech, and generally activity, recognition is to develop analyses that are invariant to the execution rates. We introduce a theoretical framework that provides a parametrization-invariant metric for comparing parametrized paths on Riemannian manifolds. Treating instances of activities as parametrized paths on a Riemannian manifold of covariance matrices, we apply this framework to the problem of visual speech recognition from image sequences. We represent each sequence as a path on the space of covariance matrices, each covariance matrix capturing spatial variability of visual features in a frame, and perform simultaneous pairwise temporal alignment and comparison of paths. This removes the temporal variability and helps provide a robust metric for visual speech classification. We evaluated this idea on the OuluVS database and the rank-1 nearest neighbor classification rate improves from 32% to 57% due to temporal alignment.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate-invariant comparisons of covariance paths for visual speech recognition\",\"authors\":\"Jingyong Su, Anuj Srivastava, F. Souza, Sudeep Sarkar\",\"doi\":\"10.1109/NCVPRIPG.2013.6776200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in speech, and generally activity, recognition is to develop analyses that are invariant to the execution rates. We introduce a theoretical framework that provides a parametrization-invariant metric for comparing parametrized paths on Riemannian manifolds. Treating instances of activities as parametrized paths on a Riemannian manifold of covariance matrices, we apply this framework to the problem of visual speech recognition from image sequences. We represent each sequence as a path on the space of covariance matrices, each covariance matrix capturing spatial variability of visual features in a frame, and perform simultaneous pairwise temporal alignment and comparison of paths. This removes the temporal variability and helps provide a robust metric for visual speech classification. We evaluated this idea on the OuluVS database and the rank-1 nearest neighbor classification rate improves from 32% to 57% due to temporal alignment.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate-invariant comparisons of covariance paths for visual speech recognition
An important problem in speech, and generally activity, recognition is to develop analyses that are invariant to the execution rates. We introduce a theoretical framework that provides a parametrization-invariant metric for comparing parametrized paths on Riemannian manifolds. Treating instances of activities as parametrized paths on a Riemannian manifold of covariance matrices, we apply this framework to the problem of visual speech recognition from image sequences. We represent each sequence as a path on the space of covariance matrices, each covariance matrix capturing spatial variability of visual features in a frame, and perform simultaneous pairwise temporal alignment and comparison of paths. This removes the temporal variability and helps provide a robust metric for visual speech classification. We evaluated this idea on the OuluVS database and the rank-1 nearest neighbor classification rate improves from 32% to 57% due to temporal alignment.