一种启发式的基于密度的蚁群聚类算法

Yun-Fei Chen, C. A. Fattah, Yu-shu Liu, Gangway Yan
{"title":"一种启发式的基于密度的蚁群聚类算法","authors":"Yun-Fei Chen, C. A. Fattah, Yu-shu Liu, Gangway Yan","doi":"10.1109/IAT.2004.1342980","DOIUrl":null,"url":null,"abstract":"We present a new heuristic density-based ant colony clustering algorithm (HDACC). Firstly, the device of \"memory bank\" is proposed, which can bring forth heuristic knowledge guiding an ant to move in the bi-dimensional grid space. Hence the randomness of the ant's motion decreases and algorithm convergence speeds up. In addition, the memory bank makes it possible for every object to be inspected before the algorithm is terminated, which avoids the production of an \"unassigned data object\". So the classification error rate drops subsequently. Secondly, we proposed a density-based method which permits each ant to \"look ahead\", which reduces the times of region-inquiry. Consequently, clustering time is saved. We carried out experiments on real data sets and synthetic data sets. The results demonstrated that HDBCSI is a viable and effective clustering algorithm.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"HDACC: a heuristic density-based ant colony clustering algorithm\",\"authors\":\"Yun-Fei Chen, C. A. Fattah, Yu-shu Liu, Gangway Yan\",\"doi\":\"10.1109/IAT.2004.1342980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new heuristic density-based ant colony clustering algorithm (HDACC). Firstly, the device of \\\"memory bank\\\" is proposed, which can bring forth heuristic knowledge guiding an ant to move in the bi-dimensional grid space. Hence the randomness of the ant's motion decreases and algorithm convergence speeds up. In addition, the memory bank makes it possible for every object to be inspected before the algorithm is terminated, which avoids the production of an \\\"unassigned data object\\\". So the classification error rate drops subsequently. Secondly, we proposed a density-based method which permits each ant to \\\"look ahead\\\", which reduces the times of region-inquiry. Consequently, clustering time is saved. We carried out experiments on real data sets and synthetic data sets. The results demonstrated that HDBCSI is a viable and effective clustering algorithm.\",\"PeriodicalId\":281008,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAT.2004.1342980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于启发式密度的蚁群聚类算法(HDACC)。首先,提出了“记忆库”装置,该装置可以产生启发式知识,引导蚂蚁在二维网格空间中移动;因此蚂蚁运动的随机性降低,算法收敛速度加快。此外,内存库使得在算法终止之前检查每个对象成为可能,从而避免了“未分配数据对象”的产生。因此分类错误率随之下降。其次,我们提出了一种基于密度的方法,允许每个蚂蚁“向前看”,从而减少了区域查询的次数。因此,可以节省集群时间。我们在真实数据集和合成数据集上进行了实验。结果表明,HDBCSI是一种可行且有效的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDACC: a heuristic density-based ant colony clustering algorithm
We present a new heuristic density-based ant colony clustering algorithm (HDACC). Firstly, the device of "memory bank" is proposed, which can bring forth heuristic knowledge guiding an ant to move in the bi-dimensional grid space. Hence the randomness of the ant's motion decreases and algorithm convergence speeds up. In addition, the memory bank makes it possible for every object to be inspected before the algorithm is terminated, which avoids the production of an "unassigned data object". So the classification error rate drops subsequently. Secondly, we proposed a density-based method which permits each ant to "look ahead", which reduces the times of region-inquiry. Consequently, clustering time is saved. We carried out experiments on real data sets and synthetic data sets. The results demonstrated that HDBCSI is a viable and effective clustering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHQ: a multi-agent reinforcement learning scheme for partially observable Markov decision processes A fuzzy multi-agent bidding model An agent-based approach to distributed data and information fusion Economic model of TAC SCM game Towards genetically optimised responsive negotiation agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1