基于GRNN的TMA跨介质入水冲击载荷分析

Dong Hao, J. Yu
{"title":"基于GRNN的TMA跨介质入水冲击载荷分析","authors":"Dong Hao, J. Yu","doi":"10.1145/3556677.3556680","DOIUrl":null,"url":null,"abstract":"The investigation on the water-entry impact load of the trans-medium aircraft (TMA) during the media-cross procedure was presented in this paper. The generalized regression neural network (GRNN) is adopted to described the characteristics of the water-entry impact load which is performed by the acceleration variable. In this paper, the train data of the water-entry impact load with the velocity 0, 2m/s, 4m/s, 6m/s, 8m/s, the angle 90°, 80°, 70°, 60°, 50°, the attitude 90°, 80°, 70°, 60°, 50° are generated by the finite element method based on the coupled Eulerian-Lagrangian (CEL) algorithm. The results show that the GRNN has a good performance on approximating the impact load of the TMA with the root mean square error (RMSE) 19.005. The deep learning algorithm for characterizing water-entry impact load can supply a good reference to the structural load evaluation of the TMA.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Presentation of water-entry impact load for TMA during media-cross procedure based on GRNN\",\"authors\":\"Dong Hao, J. Yu\",\"doi\":\"10.1145/3556677.3556680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation on the water-entry impact load of the trans-medium aircraft (TMA) during the media-cross procedure was presented in this paper. The generalized regression neural network (GRNN) is adopted to described the characteristics of the water-entry impact load which is performed by the acceleration variable. In this paper, the train data of the water-entry impact load with the velocity 0, 2m/s, 4m/s, 6m/s, 8m/s, the angle 90°, 80°, 70°, 60°, 50°, the attitude 90°, 80°, 70°, 60°, 50° are generated by the finite element method based on the coupled Eulerian-Lagrangian (CEL) algorithm. The results show that the GRNN has a good performance on approximating the impact load of the TMA with the root mean square error (RMSE) 19.005. The deep learning algorithm for characterizing water-entry impact load can supply a good reference to the structural load evaluation of the TMA.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对跨介质飞行器在跨介质过程中的入水冲击载荷进行了研究。采用广义回归神经网络(GRNN)来描述由加速度变量施加入水冲击载荷的特征。本文采用基于耦合欧拉-拉格朗日(CEL)算法的有限元方法,生成了速度为0、2m/s、4m/s、6m/s、8m/s,角度为90°、80°、70°、60°、50°,姿态为90°、80°、70°、60°、50°的入水冲击载荷的列车数据。结果表明,GRNN对TMA的冲击载荷具有较好的逼近性能,均方根误差(RMSE)为19.005。深度学习算法表征入水冲击荷载,可为TMA结构荷载评价提供很好的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Presentation of water-entry impact load for TMA during media-cross procedure based on GRNN
The investigation on the water-entry impact load of the trans-medium aircraft (TMA) during the media-cross procedure was presented in this paper. The generalized regression neural network (GRNN) is adopted to described the characteristics of the water-entry impact load which is performed by the acceleration variable. In this paper, the train data of the water-entry impact load with the velocity 0, 2m/s, 4m/s, 6m/s, 8m/s, the angle 90°, 80°, 70°, 60°, 50°, the attitude 90°, 80°, 70°, 60°, 50° are generated by the finite element method based on the coupled Eulerian-Lagrangian (CEL) algorithm. The results show that the GRNN has a good performance on approximating the impact load of the TMA with the root mean square error (RMSE) 19.005. The deep learning algorithm for characterizing water-entry impact load can supply a good reference to the structural load evaluation of the TMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Fake News on Social Media by CSIBERT Automated Recognition of Oracle Bone Inscriptions Using Deep Learning and Data Augmentation Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15 Ultrasonic scanning image defect detection of plastic packaging components based on FCOS Household Load Identification Based on Multi-label and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1