{"title":"数据挖掘的进化方法","authors":"Y. Singh, N.A.R. Araby","doi":"10.1109/ICIT.2000.854265","DOIUrl":null,"url":null,"abstract":"Data mining is the process of extracting previously unknown information from an exceedingly large data set with minimum human interference. The useful information may be expressed as relationships between propositions or variables or data elements, which can be used to predict future patterns or behaviour. The present paper investigates evolutionary computing techniques for data mining tasks in the form of discovery of association rules and presents a brief review of evolutionary computation techniques for machine learning systems. The evolution of association rules as subset selection in the best form is comprehensible and modular knowledge for understanding. The experimental results and examples for binary data set are provided to demonstrate the effectiveness of evolutionary computation for rule discovery tasks in form of association rules.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"29 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary approach to data mining\",\"authors\":\"Y. Singh, N.A.R. Araby\",\"doi\":\"10.1109/ICIT.2000.854265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is the process of extracting previously unknown information from an exceedingly large data set with minimum human interference. The useful information may be expressed as relationships between propositions or variables or data elements, which can be used to predict future patterns or behaviour. The present paper investigates evolutionary computing techniques for data mining tasks in the form of discovery of association rules and presents a brief review of evolutionary computation techniques for machine learning systems. The evolution of association rules as subset selection in the best form is comprehensible and modular knowledge for understanding. The experimental results and examples for binary data set are provided to demonstrate the effectiveness of evolutionary computation for rule discovery tasks in form of association rules.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"29 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据挖掘是在最少人为干扰的情况下,从一个非常大的数据集中提取以前未知信息的过程。有用的信息可以表示为命题、变量或数据元素之间的关系,可用于预测未来的模式或行为。本文以关联规则发现的形式研究了数据挖掘任务的进化计算技术,并简要回顾了机器学习系统的进化计算技术。关联规则演化为子集选择的最佳形式,是可理解的模块化知识。给出了二值数据集的实验结果和实例,验证了进化计算在关联规则形式的规则发现任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary approach to data mining
Data mining is the process of extracting previously unknown information from an exceedingly large data set with minimum human interference. The useful information may be expressed as relationships between propositions or variables or data elements, which can be used to predict future patterns or behaviour. The present paper investigates evolutionary computing techniques for data mining tasks in the form of discovery of association rules and presents a brief review of evolutionary computation techniques for machine learning systems. The evolution of association rules as subset selection in the best form is comprehensible and modular knowledge for understanding. The experimental results and examples for binary data set are provided to demonstrate the effectiveness of evolutionary computation for rule discovery tasks in form of association rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1