Catherine Medlock, A. Oppenheim, I. Chuang, Qi Ding
{"title":"量子系统中二元假设检验的工作特性","authors":"Catherine Medlock, A. Oppenheim, I. Chuang, Qi Ding","doi":"10.1109/ALLERTON.2019.8919700","DOIUrl":null,"url":null,"abstract":"Receiver operating characteristics (ROCs) are a well-established representation of the tradeoff between detection and false alarm probabilities in classical binary hypothesis testing. We use classical ROCs as motivation for two types of operating characteristics for binary hypothesis testing in quantum systems – decision operating characteristics (QDOCs) and measurement operating characteristics (QMOCs). Both are described in the context of a framework we propose that encompasses the typical formulations of binary hypothesis testing in both the classical and quantum scenarios. We interpret Helstrom’s well-known result [1] regarding discrimination between two quantum density operators with minimum probability of error in this framework. We also present a generalization of previous results [2], [3] regarding the correspondence between classical Parseval frames and quantum measurements. The derivation naturally leads to a constructive procedure for generating many different measurements besides Helstrom’s optimal measurement, some standard and others non-standard, that achieve minimum probability of error.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Operating Characteristics for Binary Hypothesis Testing in Quantum Systems\",\"authors\":\"Catherine Medlock, A. Oppenheim, I. Chuang, Qi Ding\",\"doi\":\"10.1109/ALLERTON.2019.8919700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Receiver operating characteristics (ROCs) are a well-established representation of the tradeoff between detection and false alarm probabilities in classical binary hypothesis testing. We use classical ROCs as motivation for two types of operating characteristics for binary hypothesis testing in quantum systems – decision operating characteristics (QDOCs) and measurement operating characteristics (QMOCs). Both are described in the context of a framework we propose that encompasses the typical formulations of binary hypothesis testing in both the classical and quantum scenarios. We interpret Helstrom’s well-known result [1] regarding discrimination between two quantum density operators with minimum probability of error in this framework. We also present a generalization of previous results [2], [3] regarding the correspondence between classical Parseval frames and quantum measurements. The derivation naturally leads to a constructive procedure for generating many different measurements besides Helstrom’s optimal measurement, some standard and others non-standard, that achieve minimum probability of error.\",\"PeriodicalId\":120479,\"journal\":{\"name\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2019.8919700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operating Characteristics for Binary Hypothesis Testing in Quantum Systems
Receiver operating characteristics (ROCs) are a well-established representation of the tradeoff between detection and false alarm probabilities in classical binary hypothesis testing. We use classical ROCs as motivation for two types of operating characteristics for binary hypothesis testing in quantum systems – decision operating characteristics (QDOCs) and measurement operating characteristics (QMOCs). Both are described in the context of a framework we propose that encompasses the typical formulations of binary hypothesis testing in both the classical and quantum scenarios. We interpret Helstrom’s well-known result [1] regarding discrimination between two quantum density operators with minimum probability of error in this framework. We also present a generalization of previous results [2], [3] regarding the correspondence between classical Parseval frames and quantum measurements. The derivation naturally leads to a constructive procedure for generating many different measurements besides Helstrom’s optimal measurement, some standard and others non-standard, that achieve minimum probability of error.