我们能预测未来长期犯罪率吗?

Yu Sang Chang, C. Choi
{"title":"我们能预测未来长期犯罪率吗?","authors":"Yu Sang Chang, C. Choi","doi":"10.2139/ssrn.2307350","DOIUrl":null,"url":null,"abstract":"Can we predict long-term crime rates? In this paper, we offer the use of simple experience curve models as an alternative forecasting method. We use the experience curve models to project total crime and violent crime rates in 2030 for 50 individual states and Washington D.C. in the United States. Results are encouraging in that projection models developed from historical data for respective states show, in general, high values of R2 over .85. Our projected crime rates show both increasing trends as well as declining trends compared to 2010. A large variation among individual states is due to highly variable experience curve slopes we estimated across respective states.","PeriodicalId":347047,"journal":{"name":"KDI School of Public Policy & Management Research Paper Series","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Can We Predict Long-Term Future Crime Rates?\",\"authors\":\"Yu Sang Chang, C. Choi\",\"doi\":\"10.2139/ssrn.2307350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can we predict long-term crime rates? In this paper, we offer the use of simple experience curve models as an alternative forecasting method. We use the experience curve models to project total crime and violent crime rates in 2030 for 50 individual states and Washington D.C. in the United States. Results are encouraging in that projection models developed from historical data for respective states show, in general, high values of R2 over .85. Our projected crime rates show both increasing trends as well as declining trends compared to 2010. A large variation among individual states is due to highly variable experience curve slopes we estimated across respective states.\",\"PeriodicalId\":347047,\"journal\":{\"name\":\"KDI School of Public Policy & Management Research Paper Series\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KDI School of Public Policy & Management Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2307350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KDI School of Public Policy & Management Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2307350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们能预测长期犯罪率吗?在本文中,我们提供了使用简单的经验曲线模型作为替代预测方法。我们使用经验曲线模型来预测2030年美国50个州和华盛顿特区的总犯罪率和暴力犯罪率。结果令人鼓舞的是,根据各自州的历史数据开发的预测模型显示,总体而言,R2高于0.85的高值。与2010年相比,我们预测的犯罪率既有上升趋势,也有下降趋势。个体状态之间的巨大差异是由于我们在各自状态中估计的高度可变的经验曲线斜率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can We Predict Long-Term Future Crime Rates?
Can we predict long-term crime rates? In this paper, we offer the use of simple experience curve models as an alternative forecasting method. We use the experience curve models to project total crime and violent crime rates in 2030 for 50 individual states and Washington D.C. in the United States. Results are encouraging in that projection models developed from historical data for respective states show, in general, high values of R2 over .85. Our projected crime rates show both increasing trends as well as declining trends compared to 2010. A large variation among individual states is due to highly variable experience curve slopes we estimated across respective states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectrum Flexibility and Mobile Development A Systematic Review of Experimental Approaches on Public Service Motivation The Development of Central Bank Digital Currency in China: An Analysis The Legacy of State Repression on Contemporary Trust: Indiscriminate versus Targeted Repression in Soviet Russia Perception of the Risk of the COVID-19 Pandemic by Population : The Case of Gabon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1