{"title":"基于概率寿命周期成本效益分析的最优使用寿命管理","authors":"Sunyong Kim","doi":"10.5762/KAIS.2016.17.4.19","DOIUrl":null,"url":null,"abstract":"Engineering structures including civil infrastructures require a life-cycle cost and benefit during their service lives. The service life of a structure can be extended through appropriate inspection and maintenance actions. In general, this service life extension requires more life-cycle cost and cumulative benefit. For this reason, structure managers need to make a rational decision regarding the service life management considering both the cost and benefit simultaneously. In this paper, the probabilistic decision tool to determine the optimal service life based on cost-benefit analysis is presented. This decision tool requires an estimation of the time-dependent effective cost-benefit under uncertainty to formulate the optimization problem. The effective cost-benefit is expressed by the difference between the cumulative benefit and life-cycle cost of a deteriorating structure over time. The objective of the optimization problem is maximizing the effective cost-benefit, and the associated solutions are the optimal service life and maintenance interventions. The decision tool presented in this paper can be applied to any deteriorating engineering structure.","PeriodicalId":438644,"journal":{"name":"Journal of the Korea Academia Industrial Cooperation Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimum Service Life Management Based on Probabilistic Life-Cycle Cost-Benefit Analysis\",\"authors\":\"Sunyong Kim\",\"doi\":\"10.5762/KAIS.2016.17.4.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering structures including civil infrastructures require a life-cycle cost and benefit during their service lives. The service life of a structure can be extended through appropriate inspection and maintenance actions. In general, this service life extension requires more life-cycle cost and cumulative benefit. For this reason, structure managers need to make a rational decision regarding the service life management considering both the cost and benefit simultaneously. In this paper, the probabilistic decision tool to determine the optimal service life based on cost-benefit analysis is presented. This decision tool requires an estimation of the time-dependent effective cost-benefit under uncertainty to formulate the optimization problem. The effective cost-benefit is expressed by the difference between the cumulative benefit and life-cycle cost of a deteriorating structure over time. The objective of the optimization problem is maximizing the effective cost-benefit, and the associated solutions are the optimal service life and maintenance interventions. The decision tool presented in this paper can be applied to any deteriorating engineering structure.\",\"PeriodicalId\":438644,\"journal\":{\"name\":\"Journal of the Korea Academia Industrial Cooperation Society\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Academia Industrial Cooperation Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5762/KAIS.2016.17.4.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Academia Industrial Cooperation Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5762/KAIS.2016.17.4.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimum Service Life Management Based on Probabilistic Life-Cycle Cost-Benefit Analysis
Engineering structures including civil infrastructures require a life-cycle cost and benefit during their service lives. The service life of a structure can be extended through appropriate inspection and maintenance actions. In general, this service life extension requires more life-cycle cost and cumulative benefit. For this reason, structure managers need to make a rational decision regarding the service life management considering both the cost and benefit simultaneously. In this paper, the probabilistic decision tool to determine the optimal service life based on cost-benefit analysis is presented. This decision tool requires an estimation of the time-dependent effective cost-benefit under uncertainty to formulate the optimization problem. The effective cost-benefit is expressed by the difference between the cumulative benefit and life-cycle cost of a deteriorating structure over time. The objective of the optimization problem is maximizing the effective cost-benefit, and the associated solutions are the optimal service life and maintenance interventions. The decision tool presented in this paper can be applied to any deteriorating engineering structure.