凸结构中协方差估计的鲁棒- comet:算法和统计性质

Bruno Mériaux, Chengfang Ren, M. Korso, A. Breloy, P. Forster
{"title":"凸结构中协方差估计的鲁棒- comet:算法和统计性质","authors":"Bruno Mériaux, Chengfang Ren, M. Korso, A. Breloy, P. Forster","doi":"10.1109/CAMSAP.2017.8313081","DOIUrl":null,"url":null,"abstract":"This paper deals with structured covariance matrix estimation in a robust statistical framework. Covariance matrices often exhibit a particular structure related to the application of interest and taking this structure into account increases estimation accuracy. Within the framework of robust estimation, the class of circular Complex Elliptically Symmetric (CES) distributions is particularly interesting to handle impulsive and spiky data. Normalized CES random vectors are known to share a common Complex Angular Elliptical distribution. In this context, we propose a Robust Covariance Matrix Estimation Technique (RCOMET) based on Tyler's estimate and COMET criterion for convexly structured matrices. We prove that the proposed estimator is consistent and asymptotically efficient while computationally attractive. Numerical results support the theoretical analysis in a particular application for Hermitian Toeplitz structure.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust-COMET for covariance estimation in convex structures: Algorithm and statistical properties\",\"authors\":\"Bruno Mériaux, Chengfang Ren, M. Korso, A. Breloy, P. Forster\",\"doi\":\"10.1109/CAMSAP.2017.8313081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with structured covariance matrix estimation in a robust statistical framework. Covariance matrices often exhibit a particular structure related to the application of interest and taking this structure into account increases estimation accuracy. Within the framework of robust estimation, the class of circular Complex Elliptically Symmetric (CES) distributions is particularly interesting to handle impulsive and spiky data. Normalized CES random vectors are known to share a common Complex Angular Elliptical distribution. In this context, we propose a Robust Covariance Matrix Estimation Technique (RCOMET) based on Tyler's estimate and COMET criterion for convexly structured matrices. We prove that the proposed estimator is consistent and asymptotically efficient while computationally attractive. Numerical results support the theoretical analysis in a particular application for Hermitian Toeplitz structure.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了在稳健统计框架下的结构化协方差矩阵估计问题。协方差矩阵通常表现出与感兴趣的应用相关的特定结构,考虑这种结构可以提高估计的准确性。在鲁棒估计的框架内,圆形复椭圆对称分布(CES)类对于处理脉冲和尖形数据特别有趣。已知归一化CES随机向量共享一个共同的复角椭圆分布。在此背景下,我们提出了一种基于Tyler估计和COMET准则的凸结构矩阵鲁棒协方差矩阵估计技术(RCOMET)。我们证明了所提出的估计量是一致的和渐近有效的,并且在计算上是有吸引力的。数值结果支持了厄米图普利兹结构在特定应用中的理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust-COMET for covariance estimation in convex structures: Algorithm and statistical properties
This paper deals with structured covariance matrix estimation in a robust statistical framework. Covariance matrices often exhibit a particular structure related to the application of interest and taking this structure into account increases estimation accuracy. Within the framework of robust estimation, the class of circular Complex Elliptically Symmetric (CES) distributions is particularly interesting to handle impulsive and spiky data. Normalized CES random vectors are known to share a common Complex Angular Elliptical distribution. In this context, we propose a Robust Covariance Matrix Estimation Technique (RCOMET) based on Tyler's estimate and COMET criterion for convexly structured matrices. We prove that the proposed estimator is consistent and asymptotically efficient while computationally attractive. Numerical results support the theoretical analysis in a particular application for Hermitian Toeplitz structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1