基于深度学习的可回收垃圾分类

Yulong He, Tianjian Li, Jianchao Huang, Zejun Zhang, Zhuangzhuang Wang, Zhiming Cai
{"title":"基于深度学习的可回收垃圾分类","authors":"Yulong He, Tianjian Li, Jianchao Huang, Zejun Zhang, Zhuangzhuang Wang, Zhiming Cai","doi":"10.1145/3548608.3559190","DOIUrl":null,"url":null,"abstract":"Waste classification has attracted more and more attention in recent years, which is an important part of building an eco-friendly city. Traditional manual garbage classification has poor efficiency and accuracy. In this paper, based on deep learning, the garbage classification algorithm I-ResNet50 is proposed to improve the ResNet50 network, and the geometric transformation of the original data is performed. The test set results show that the I-ResNet50 algorithm can achieve a classification accuracy of 62.6%, which is a substantial improvement in accuracy compared with the original method.","PeriodicalId":201434,"journal":{"name":"Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based recyclable waste classification\",\"authors\":\"Yulong He, Tianjian Li, Jianchao Huang, Zejun Zhang, Zhuangzhuang Wang, Zhiming Cai\",\"doi\":\"10.1145/3548608.3559190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste classification has attracted more and more attention in recent years, which is an important part of building an eco-friendly city. Traditional manual garbage classification has poor efficiency and accuracy. In this paper, based on deep learning, the garbage classification algorithm I-ResNet50 is proposed to improve the ResNet50 network, and the geometric transformation of the original data is performed. The test set results show that the I-ResNet50 algorithm can achieve a classification accuracy of 62.6%, which is a substantial improvement in accuracy compared with the original method.\",\"PeriodicalId\":201434,\"journal\":{\"name\":\"Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548608.3559190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548608.3559190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

垃圾分类是建设生态城市的重要组成部分,近年来受到越来越多的关注。传统的人工垃圾分类效率和准确率较差。本文基于深度学习,提出垃圾分类算法I-ResNet50对ResNet50网络进行改进,并对原始数据进行几何变换。测试集结果表明,I-ResNet50算法可以达到62.6%的分类准确率,与原方法相比准确率有了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning based recyclable waste classification
Waste classification has attracted more and more attention in recent years, which is an important part of building an eco-friendly city. Traditional manual garbage classification has poor efficiency and accuracy. In this paper, based on deep learning, the garbage classification algorithm I-ResNet50 is proposed to improve the ResNet50 network, and the geometric transformation of the original data is performed. The test set results show that the I-ResNet50 algorithm can achieve a classification accuracy of 62.6%, which is a substantial improvement in accuracy compared with the original method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Optimization of cold chain logistics distribution path of agricultural products in Hefei Design and Implementation of a Batteryless Pedometer based on a Motion Tracking Sensor Rapid visual positioning of sheet metal parts based on electronic drawing templates An analysis of hot topics and trends in foreign 3D printing technology research——analysis of knowledge graphs based on citation indexes such as SSCI Tibetan Jiu Chess Game Algorithm based on Expert Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1