基于多分辨率LPQ和SIFT的无约束性别分类

Huu-Tuan Nguyen, T. Huong
{"title":"基于多分辨率LPQ和SIFT的无约束性别分类","authors":"Huu-Tuan Nguyen, T. Huong","doi":"10.1109/NICS.2016.7725652","DOIUrl":null,"url":null,"abstract":"One of the most critical tasks in building a gender classification is how to describe the human face as a highly discriminative feature vector. To this end, in this paper we introduce a new handcrafted feature extraction method for unconstrained gender classification problem. From one input face image, we generate its smaller version and apply two LPQ operators on both of them. We then combine the obtained LPQ features with the SIFT feature extracted from the given image to constitute a global facial description. In the classification stage, the binary SVM classifier is used for determining the gender of the test images. To evaluate the recognition performance of the proposed methods, we carry out experiments upon two widely used unconstrained face databases Adience and LFW. The results show that our approach attains good classification rates (96.51% and 80.5% on LFW and Adience databases, respectively) and can be comparable with state-of-the-art systems.","PeriodicalId":347057,"journal":{"name":"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unconstrained gender classification by multi-resolution LPQ and SIFT\",\"authors\":\"Huu-Tuan Nguyen, T. Huong\",\"doi\":\"10.1109/NICS.2016.7725652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most critical tasks in building a gender classification is how to describe the human face as a highly discriminative feature vector. To this end, in this paper we introduce a new handcrafted feature extraction method for unconstrained gender classification problem. From one input face image, we generate its smaller version and apply two LPQ operators on both of them. We then combine the obtained LPQ features with the SIFT feature extracted from the given image to constitute a global facial description. In the classification stage, the binary SVM classifier is used for determining the gender of the test images. To evaluate the recognition performance of the proposed methods, we carry out experiments upon two widely used unconstrained face databases Adience and LFW. The results show that our approach attains good classification rates (96.51% and 80.5% on LFW and Adience databases, respectively) and can be comparable with state-of-the-art systems.\",\"PeriodicalId\":347057,\"journal\":{\"name\":\"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS.2016.7725652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS.2016.7725652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

建立性别分类最关键的任务之一是如何将人脸描述为高度判别的特征向量。为此,本文引入了一种新的手工特征提取方法来解决无约束性别分类问题。从一个输入的人脸图像中,我们生成其较小的版本,并在它们上应用两个LPQ算子。然后,我们将得到的LPQ特征与从给定图像中提取的SIFT特征结合起来,构成一个全局的面部描述。在分类阶段,使用二值支持向量机分类器确定测试图像的性别。为了评估所提方法的识别性能,我们在两个广泛使用的无约束人脸数据库Adience和LFW上进行了实验。结果表明,我们的方法获得了良好的分类率(在LFW和Adience数据库上分别为96.51%和80.5%),可以与最先进的系统相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unconstrained gender classification by multi-resolution LPQ and SIFT
One of the most critical tasks in building a gender classification is how to describe the human face as a highly discriminative feature vector. To this end, in this paper we introduce a new handcrafted feature extraction method for unconstrained gender classification problem. From one input face image, we generate its smaller version and apply two LPQ operators on both of them. We then combine the obtained LPQ features with the SIFT feature extracted from the given image to constitute a global facial description. In the classification stage, the binary SVM classifier is used for determining the gender of the test images. To evaluate the recognition performance of the proposed methods, we carry out experiments upon two widely used unconstrained face databases Adience and LFW. The results show that our approach attains good classification rates (96.51% and 80.5% on LFW and Adience databases, respectively) and can be comparable with state-of-the-art systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadlock prevention for resource allocation in model nVM-out-of-1PM Early containment of fast network worm malware AF relay-assisted MIMO/FSO/QAM systems in Gamma-Gamma fading channels Incremental verification of ω-regions on binary control flow graph for computer virus detection A reconfigurable heterogeneous multicore architecture for DDoS protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1