采用混合片上匹配电路的灵活线路速度网络分组分类

Andreas Fiessler, Sven Hager, B. Scheuermann
{"title":"采用混合片上匹配电路的灵活线路速度网络分组分类","authors":"Andreas Fiessler, Sven Hager, B. Scheuermann","doi":"10.1109/HPSR.2017.7968678","DOIUrl":null,"url":null,"abstract":"Packet classification is a core feature needed in firewalls, SDN switches, and QoS routers. Current research to accelerate the classification with hardware employing Field-programmable Gate Arrays (FPGAs) created a variety of approaches, with significant differences in terms of hardware resource requirements, memory usage, configuration update time, and power dissipation. However, there is no optimal, universal method for classification at link rate, due to inherent conflicts between large generic circuits with high resource consumption, and optimized circuits with limited versatility. Thus, current implementations have different trade-offs in terms of memory usage, resource requirements, power consumption, and flexibility. As a new approach to tackle this challenge, we present a hybrid concept that combines an highly optimized configuration-specialized and thus energy- and resource-efficient classification circuit with a generic matching circuit whose configuration can be updated quickly. The combined circuit can thus support reasonably fast configuration updates, has a low power dissipation, and can process network packets at link rate.","PeriodicalId":169489,"journal":{"name":"2017 IEEE 18th International Conference on High Performance Switching and Routing (HPSR)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Flexible line speed network packet classification using hybrid on-chip matching circuits\",\"authors\":\"Andreas Fiessler, Sven Hager, B. Scheuermann\",\"doi\":\"10.1109/HPSR.2017.7968678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packet classification is a core feature needed in firewalls, SDN switches, and QoS routers. Current research to accelerate the classification with hardware employing Field-programmable Gate Arrays (FPGAs) created a variety of approaches, with significant differences in terms of hardware resource requirements, memory usage, configuration update time, and power dissipation. However, there is no optimal, universal method for classification at link rate, due to inherent conflicts between large generic circuits with high resource consumption, and optimized circuits with limited versatility. Thus, current implementations have different trade-offs in terms of memory usage, resource requirements, power consumption, and flexibility. As a new approach to tackle this challenge, we present a hybrid concept that combines an highly optimized configuration-specialized and thus energy- and resource-efficient classification circuit with a generic matching circuit whose configuration can be updated quickly. The combined circuit can thus support reasonably fast configuration updates, has a low power dissipation, and can process network packets at link rate.\",\"PeriodicalId\":169489,\"journal\":{\"name\":\"2017 IEEE 18th International Conference on High Performance Switching and Routing (HPSR)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 18th International Conference on High Performance Switching and Routing (HPSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR.2017.7968678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 18th International Conference on High Performance Switching and Routing (HPSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR.2017.7968678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

包分类是防火墙、SDN交换机和QoS路由器的核心特性。目前,利用现场可编程门阵列(fpga)加速硬件分类的研究创造了多种方法,在硬件资源需求、内存使用、配置更新时间和功耗方面存在显著差异。然而,由于资源消耗高的大型通用电路与通用性有限的优化电路之间存在固有冲突,链路速率下没有最优的通用分类方法。因此,当前的实现在内存使用、资源需求、功耗和灵活性方面有不同的权衡。作为解决这一挑战的一种新方法,我们提出了一种混合概念,将高度优化的配置专业化,从而节能和资源高效的分类电路与配置可以快速更新的通用匹配电路相结合。因此,组合电路可以支持合理快速的配置更新,具有低功耗,并且可以按照链路速率处理网络数据包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible line speed network packet classification using hybrid on-chip matching circuits
Packet classification is a core feature needed in firewalls, SDN switches, and QoS routers. Current research to accelerate the classification with hardware employing Field-programmable Gate Arrays (FPGAs) created a variety of approaches, with significant differences in terms of hardware resource requirements, memory usage, configuration update time, and power dissipation. However, there is no optimal, universal method for classification at link rate, due to inherent conflicts between large generic circuits with high resource consumption, and optimized circuits with limited versatility. Thus, current implementations have different trade-offs in terms of memory usage, resource requirements, power consumption, and flexibility. As a new approach to tackle this challenge, we present a hybrid concept that combines an highly optimized configuration-specialized and thus energy- and resource-efficient classification circuit with a generic matching circuit whose configuration can be updated quickly. The combined circuit can thus support reasonably fast configuration updates, has a low power dissipation, and can process network packets at link rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the effect of Wavelength Selective Switch latency on optical flow switching performance Alternate paths for multiple fault tolerance on Dynamic WDM Optical Networks A new Bloom filter structure for identifying true positiveness of a Bloom filter Analysis and implementation of packet preemption for Time Sensitive Networks On combining Split Spectrum technique with a Slot-Continuity Capacity Loss heuristic in Elastic Optical Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1