多函数逼近——非对称复杂模糊推理系统的一种新方法

Chia-Hao Tu, Chunshien Li
{"title":"多函数逼近——非对称复杂模糊推理系统的一种新方法","authors":"Chia-Hao Tu, Chunshien Li","doi":"10.1142/S2196888819500222","DOIUrl":null,"url":null,"abstract":"This paper proposes an asymmetric complex fuzzy inference system (ACFIS) that improves a conventional fuzzy inference system (FIS) in two ways. First, the proposed model uses the novel neural-net-like aim–object parts, making the model flexible, in terms of model size of parameters and terse asymmetric structure. Second, the enhanced complex fuzzy sets (ECFSs) are used to expand membership degree from a single real-valued state to complex-valued vector state. Hence, the ACFIS can have the ability to predict multiple targets simultaneously. In addition, a hybrid learning algorithm, combining the particle swarm optimization (PSO) and the recursive least-square estimator (RLSE), is utilized to optimize the proposed model. To test the proposed approach, we did experimentation on four-function approximation using one single model only with 10 repeated trails. Based on the experimental results, the ACFIS has shown excellent performance.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Function Approximation - A New Approach Using Asymmetric Complex Fuzzy Inference System\",\"authors\":\"Chia-Hao Tu, Chunshien Li\",\"doi\":\"10.1142/S2196888819500222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an asymmetric complex fuzzy inference system (ACFIS) that improves a conventional fuzzy inference system (FIS) in two ways. First, the proposed model uses the novel neural-net-like aim–object parts, making the model flexible, in terms of model size of parameters and terse asymmetric structure. Second, the enhanced complex fuzzy sets (ECFSs) are used to expand membership degree from a single real-valued state to complex-valued vector state. Hence, the ACFIS can have the ability to predict multiple targets simultaneously. In addition, a hybrid learning algorithm, combining the particle swarm optimization (PSO) and the recursive least-square estimator (RLSE), is utilized to optimize the proposed model. To test the proposed approach, we did experimentation on four-function approximation using one single model only with 10 repeated trails. Based on the experimental results, the ACFIS has shown excellent performance.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2196888819500222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2196888819500222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种非对称复杂模糊推理系统(ACFIS),从两个方面对传统模糊推理系统进行了改进。首先,该模型采用了新颖的类神经网络目标部件,使模型在参数的模型尺寸和简洁的非对称结构方面具有灵活性。其次,利用增强复模糊集(ecfs)将隶属度从单个实值状态扩展到复值向量状态;因此,ACFIS具有同时预测多个目标的能力。此外,采用粒子群算法(PSO)和递推最小二乘估计(RLSE)相结合的混合学习算法对模型进行优化。为了测试所提出的方法,我们使用一个单一模型进行了四函数近似实验,只有10次重复试验。实验结果表明,该系统具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Function Approximation - A New Approach Using Asymmetric Complex Fuzzy Inference System
This paper proposes an asymmetric complex fuzzy inference system (ACFIS) that improves a conventional fuzzy inference system (FIS) in two ways. First, the proposed model uses the novel neural-net-like aim–object parts, making the model flexible, in terms of model size of parameters and terse asymmetric structure. Second, the enhanced complex fuzzy sets (ECFSs) are used to expand membership degree from a single real-valued state to complex-valued vector state. Hence, the ACFIS can have the ability to predict multiple targets simultaneously. In addition, a hybrid learning algorithm, combining the particle swarm optimization (PSO) and the recursive least-square estimator (RLSE), is utilized to optimize the proposed model. To test the proposed approach, we did experimentation on four-function approximation using one single model only with 10 repeated trails. Based on the experimental results, the ACFIS has shown excellent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1