Qianqian Wang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, Y. Fu
{"title":"基于一致性GAN的部分多视图聚类","authors":"Qianqian Wang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, Y. Fu","doi":"10.1109/ICDM.2018.00174","DOIUrl":null,"url":null,"abstract":"Multi-view clustering, as one of the most important methods to analyze multi-view data, has been widely used in many real-world applications. Most existing multi-view clustering methods perform well on the assumption that each sample appears in all views. Nevertheless, in real-world application, each view may well face the problem of the missing data due to noise, or malfunction. In this paper, a new consistent generative adversarial network is proposed for partial multi-view clustering. We learn a common low-dimensional representation, which can both generate the missing view data and capture a better common structure from partial multi-view data for clustering. Different from the most existing methods, we use the common representation encoded by one view to generate the missing data of the corresponding view by generative adversarial networks, then we use the encoder and clustering networks. This is intuitive and meaningful because encoding common representation and generating the missing data in our model will promote mutually. Experimental results on three different multi-view databases illustrate the superiority of the proposed method.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Partial Multi-view Clustering via Consistent GAN\",\"authors\":\"Qianqian Wang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, Y. Fu\",\"doi\":\"10.1109/ICDM.2018.00174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view clustering, as one of the most important methods to analyze multi-view data, has been widely used in many real-world applications. Most existing multi-view clustering methods perform well on the assumption that each sample appears in all views. Nevertheless, in real-world application, each view may well face the problem of the missing data due to noise, or malfunction. In this paper, a new consistent generative adversarial network is proposed for partial multi-view clustering. We learn a common low-dimensional representation, which can both generate the missing view data and capture a better common structure from partial multi-view data for clustering. Different from the most existing methods, we use the common representation encoded by one view to generate the missing data of the corresponding view by generative adversarial networks, then we use the encoder and clustering networks. This is intuitive and meaningful because encoding common representation and generating the missing data in our model will promote mutually. Experimental results on three different multi-view databases illustrate the superiority of the proposed method.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-view clustering, as one of the most important methods to analyze multi-view data, has been widely used in many real-world applications. Most existing multi-view clustering methods perform well on the assumption that each sample appears in all views. Nevertheless, in real-world application, each view may well face the problem of the missing data due to noise, or malfunction. In this paper, a new consistent generative adversarial network is proposed for partial multi-view clustering. We learn a common low-dimensional representation, which can both generate the missing view data and capture a better common structure from partial multi-view data for clustering. Different from the most existing methods, we use the common representation encoded by one view to generate the missing data of the corresponding view by generative adversarial networks, then we use the encoder and clustering networks. This is intuitive and meaningful because encoding common representation and generating the missing data in our model will promote mutually. Experimental results on three different multi-view databases illustrate the superiority of the proposed method.