{"title":"泛在传感器网络自修复故障管理","authors":"Giljong Yoo, Jinsoo Jung, Eunseok Lee","doi":"10.1109/FGCNS.2008.156","DOIUrl":null,"url":null,"abstract":"This work concerns the development of a fault model of sensor for detecting and isolating sensor, actuator, and various faults in USNs (Ubiquitous Sensor Network). USN are developed to create relationships between humans, objects and computers in various fields. A management research of sensor nodes is very important because the ubiquitous sensor network has the numerous sensor nodes. However, Self-healing technologies are insufficient to restore when an error event occurs in a sensor node in a USN environment. A layered healing architecture for each node layer (3-tier) is needed, because most sensor devices have different capacities in USN. In this paper, we design a fault model and architecture of the sensor and sensor node separately for self-healing in USN. In order to evaluate our approach, we implement prototype of the USN fault management system to evaluate our approach. We compare the resource use of self-healing components in the general distributed computing (wired network) and the USN.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fault Management for Self-Healing in Ubiquitous Sensor Network\",\"authors\":\"Giljong Yoo, Jinsoo Jung, Eunseok Lee\",\"doi\":\"10.1109/FGCNS.2008.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work concerns the development of a fault model of sensor for detecting and isolating sensor, actuator, and various faults in USNs (Ubiquitous Sensor Network). USN are developed to create relationships between humans, objects and computers in various fields. A management research of sensor nodes is very important because the ubiquitous sensor network has the numerous sensor nodes. However, Self-healing technologies are insufficient to restore when an error event occurs in a sensor node in a USN environment. A layered healing architecture for each node layer (3-tier) is needed, because most sensor devices have different capacities in USN. In this paper, we design a fault model and architecture of the sensor and sensor node separately for self-healing in USN. In order to evaluate our approach, we implement prototype of the USN fault management system to evaluate our approach. We compare the resource use of self-healing components in the general distributed computing (wired network) and the USN.\",\"PeriodicalId\":370780,\"journal\":{\"name\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGCNS.2008.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Management for Self-Healing in Ubiquitous Sensor Network
This work concerns the development of a fault model of sensor for detecting and isolating sensor, actuator, and various faults in USNs (Ubiquitous Sensor Network). USN are developed to create relationships between humans, objects and computers in various fields. A management research of sensor nodes is very important because the ubiquitous sensor network has the numerous sensor nodes. However, Self-healing technologies are insufficient to restore when an error event occurs in a sensor node in a USN environment. A layered healing architecture for each node layer (3-tier) is needed, because most sensor devices have different capacities in USN. In this paper, we design a fault model and architecture of the sensor and sensor node separately for self-healing in USN. In order to evaluate our approach, we implement prototype of the USN fault management system to evaluate our approach. We compare the resource use of self-healing components in the general distributed computing (wired network) and the USN.