使用自然语言处理技术的NASA异常自动分类

D. Falessi, L. Layman
{"title":"使用自然语言处理技术的NASA异常自动分类","authors":"D. Falessi, L. Layman","doi":"10.1109/ISSREW.2013.6688849","DOIUrl":null,"url":null,"abstract":"NASA anomaly databases are rich resources of software failure data in the field. These data are often captured in natural language that is not appropriate for trending or statistical analyses. This fast abstract describes a feasibility study of applying 60 natural language processing techniques for automatically classifying anomaly data to enable trend analyses.","PeriodicalId":332420,"journal":{"name":"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automated classification of NASA anomalies using natural language processing techniques\",\"authors\":\"D. Falessi, L. Layman\",\"doi\":\"10.1109/ISSREW.2013.6688849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASA anomaly databases are rich resources of software failure data in the field. These data are often captured in natural language that is not appropriate for trending or statistical analyses. This fast abstract describes a feasibility study of applying 60 natural language processing techniques for automatically classifying anomaly data to enable trend analyses.\",\"PeriodicalId\":332420,\"journal\":{\"name\":\"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2013.6688849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2013.6688849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

NASA异常数据库是野外软件故障数据的丰富资源。这些数据通常是用自然语言捕获的,不适合趋势分析或统计分析。本文简要介绍了应用60种自然语言处理技术对异常数据进行自动分类以实现趋势分析的可行性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated classification of NASA anomalies using natural language processing techniques
NASA anomaly databases are rich resources of software failure data in the field. These data are often captured in natural language that is not appropriate for trending or statistical analyses. This fast abstract describes a feasibility study of applying 60 natural language processing techniques for automatically classifying anomaly data to enable trend analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bug localisation through diverse sources of information A chain of accountabilities in open systems based on assured entrustments Estimating response time distribution of server application in software aging phenomenon Safety assessment of software-intensive medical devices: Introducing a safety quality model approach Detection of missing requirements using base requirements pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1