{"title":"保持结构的图像质量评估","authors":"Yilin Wang, Qiang Zhang, Baoxin Li","doi":"10.1109/ICME.2015.7177436","DOIUrl":null,"url":null,"abstract":"Perceptual Image Quality Assessment (IQA) has many applications. Existing IQA approaches typically work only for one of three scenarios: full-reference, non-reference, or reduced-reference. Techniques that attempt to incorporate image structure information often rely on hand-crafted features, making them difficult to be extended to handle different scenarios. On the other hand, objective metrics like Mean Square Error (MSE), while being easy to compute, are often deemed ineffective for measuring perceptual quality. This paper presents a novel approach to perceptual quality assessment by developing an MSE-like metric, which enjoys the benefit of MSE in terms of inexpensive computation and universal applicability while allowing structural information of an image being taken into consideration. The latter was achieved through introducing structure-preserving kernelization into a MSE-like formulation. We show that the method can lead to competitive FR-IQA results. Further, by developing a feature coding scheme based on this formulation, we extend the model to improve the performance of NR-IQA methods. We report extensive experiments illustrating the results from both our FR-IQA and NR-IQA algorithms with comparison to existing state-of-the-art methods.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structure-preserving Image Quality Assessment\",\"authors\":\"Yilin Wang, Qiang Zhang, Baoxin Li\",\"doi\":\"10.1109/ICME.2015.7177436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perceptual Image Quality Assessment (IQA) has many applications. Existing IQA approaches typically work only for one of three scenarios: full-reference, non-reference, or reduced-reference. Techniques that attempt to incorporate image structure information often rely on hand-crafted features, making them difficult to be extended to handle different scenarios. On the other hand, objective metrics like Mean Square Error (MSE), while being easy to compute, are often deemed ineffective for measuring perceptual quality. This paper presents a novel approach to perceptual quality assessment by developing an MSE-like metric, which enjoys the benefit of MSE in terms of inexpensive computation and universal applicability while allowing structural information of an image being taken into consideration. The latter was achieved through introducing structure-preserving kernelization into a MSE-like formulation. We show that the method can lead to competitive FR-IQA results. Further, by developing a feature coding scheme based on this formulation, we extend the model to improve the performance of NR-IQA methods. We report extensive experiments illustrating the results from both our FR-IQA and NR-IQA algorithms with comparison to existing state-of-the-art methods.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perceptual Image Quality Assessment (IQA) has many applications. Existing IQA approaches typically work only for one of three scenarios: full-reference, non-reference, or reduced-reference. Techniques that attempt to incorporate image structure information often rely on hand-crafted features, making them difficult to be extended to handle different scenarios. On the other hand, objective metrics like Mean Square Error (MSE), while being easy to compute, are often deemed ineffective for measuring perceptual quality. This paper presents a novel approach to perceptual quality assessment by developing an MSE-like metric, which enjoys the benefit of MSE in terms of inexpensive computation and universal applicability while allowing structural information of an image being taken into consideration. The latter was achieved through introducing structure-preserving kernelization into a MSE-like formulation. We show that the method can lead to competitive FR-IQA results. Further, by developing a feature coding scheme based on this formulation, we extend the model to improve the performance of NR-IQA methods. We report extensive experiments illustrating the results from both our FR-IQA and NR-IQA algorithms with comparison to existing state-of-the-art methods.