语音助手动态分析

Shilpa De, Vishwas Kumar, R. Reddy
{"title":"语音助手动态分析","authors":"Shilpa De, Vishwas Kumar, R. Reddy","doi":"10.1109/SILCON55242.2022.10028977","DOIUrl":null,"url":null,"abstract":"Deep learning is becoming a mainstream technology for speech recognition as well as face recognition at an industrial scale. The ability of devices to respond to spoken commands is basically speech recognition. The main objective of building a voice assistant is using semantic data sources available on the web providing knowledge to the users from the knowledge database. For the security purpose of the voice-triggered device, liveness analysis is required. The objective of this paper is to prevent spoofing attacks on voice assistant devices by introducing a liveness analysis of genuine faces. Different classification algorithms are used for face recognition purposes. Finally, the performance analysis of different classification models is made.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voice-Assistant Liveness Analysis\",\"authors\":\"Shilpa De, Vishwas Kumar, R. Reddy\",\"doi\":\"10.1109/SILCON55242.2022.10028977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is becoming a mainstream technology for speech recognition as well as face recognition at an industrial scale. The ability of devices to respond to spoken commands is basically speech recognition. The main objective of building a voice assistant is using semantic data sources available on the web providing knowledge to the users from the knowledge database. For the security purpose of the voice-triggered device, liveness analysis is required. The objective of this paper is to prevent spoofing attacks on voice assistant devices by introducing a liveness analysis of genuine faces. Different classification algorithms are used for face recognition purposes. Finally, the performance analysis of different classification models is made.\",\"PeriodicalId\":183947,\"journal\":{\"name\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SILCON55242.2022.10028977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习正在成为语音识别和人脸识别在工业规模上的主流技术。设备响应语音命令的能力基本上是语音识别。构建语音助手的主要目标是利用网络上可用的语义数据源,从知识库中向用户提供知识。为了保证语音触发设备的安全性,需要进行动态分析。本文的目的是通过引入真实面孔的活体分析来防止对语音助理设备的欺骗攻击。不同的分类算法用于人脸识别目的。最后,对不同的分类模型进行了性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voice-Assistant Liveness Analysis
Deep learning is becoming a mainstream technology for speech recognition as well as face recognition at an industrial scale. The ability of devices to respond to spoken commands is basically speech recognition. The main objective of building a voice assistant is using semantic data sources available on the web providing knowledge to the users from the knowledge database. For the security purpose of the voice-triggered device, liveness analysis is required. The objective of this paper is to prevent spoofing attacks on voice assistant devices by introducing a liveness analysis of genuine faces. Different classification algorithms are used for face recognition purposes. Finally, the performance analysis of different classification models is made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis of Relay Assisted NOMA Multi-Casting System for Cellular V2X Communications Comparison of Resampling Techniques for Imbalanced Datasets in Student Dropout Prediction Raw Waveform Based Speaker Identification Using Deep Neural Networks Multiclass Signal Quality Assessment of Electrocardiogram using Entropy-based Features and Machine Learning Technique A Study on Legal Judgment Prediction using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1