神经网络模糊最小-最大分类

P. K. Simpson
{"title":"神经网络模糊最小-最大分类","authors":"P. K. Simpson","doi":"10.1109/ICNN.1991.163365","DOIUrl":null,"url":null,"abstract":"A feedforward neural network classifier that uses min-max vector pairs to define classes is described. This two-layer neural network utilizes a supervised learning rule to build a set of classes. Each node in the output layer of the network represents a class. During recall each class node produces an output value that represents the degree to which the input pattern fits within the represented classes. This fuzzy neural network is ideally suited to applications that have very little data available to define classes. The author provides a brief overview of fuzzy sets and fuzzy pattern classification, a description of fuzzy min-max classification and its neural network implementation, and an example of the classification operation.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Fuzzy min-max classification with neural networks\",\"authors\":\"P. K. Simpson\",\"doi\":\"10.1109/ICNN.1991.163365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feedforward neural network classifier that uses min-max vector pairs to define classes is described. This two-layer neural network utilizes a supervised learning rule to build a set of classes. Each node in the output layer of the network represents a class. During recall each class node produces an output value that represents the degree to which the input pattern fits within the represented classes. This fuzzy neural network is ideally suited to applications that have very little data available to define classes. The author provides a brief overview of fuzzy sets and fuzzy pattern classification, a description of fuzzy min-max classification and its neural network implementation, and an example of the classification operation.<<ETX>>\",\"PeriodicalId\":296300,\"journal\":{\"name\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1991.163365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

描述了一种使用最小-最大向量对来定义类的前馈神经网络分类器。这种双层神经网络利用监督学习规则来构建一组类。网络输出层中的每个节点代表一个类。在召回过程中,每个类节点都会产生一个输出值,该输出值表示输入模式在表示的类中适合的程度。这种模糊神经网络非常适合用于定义类的可用数据非常少的应用程序。作者简要概述了模糊集和模糊模式分类,描述了模糊最小-最大分类及其神经网络实现,并给出了分类操作的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy min-max classification with neural networks
A feedforward neural network classifier that uses min-max vector pairs to define classes is described. This two-layer neural network utilizes a supervised learning rule to build a set of classes. Each node in the output layer of the network represents a class. During recall each class node produces an output value that represents the degree to which the input pattern fits within the represented classes. This fuzzy neural network is ideally suited to applications that have very little data available to define classes. The author provides a brief overview of fuzzy sets and fuzzy pattern classification, a description of fuzzy min-max classification and its neural network implementation, and an example of the classification operation.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of neural network and conventional techniques for sonar signal discrimination The potential of a neural network based sonar system in classifying fish Neural network for underwater target detection Design of an intelligent control system for remotely operated vehicles All neural network sonar discrimination system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1