{"title":"马拉维利隆圭市土地利用、土地覆盖和地表温度变化监测","authors":"S. Gondwe, Richard Muchena, Jerome Boys","doi":"10.37591/.V9I2.126","DOIUrl":null,"url":null,"abstract":"In south east Africa, Lilongwe city had an observed rapid population growth over the past decade and a half. The same city also had recently observed increased temperatures and adverse weather conditions such as occassional heavy storms which caused severe flooding in January 2017 and December 2017. It was therefore thought wise to do a land use and land cover (LULC) study of the city over time to detect land cover changes and its effect on land surface temperatures (LST). Landsat imagery was acquired for the year(s) 2008, 2013 and 2017 and it was classified to detect LULC changes for these given years. A significant (P<0.05) expansion of the city was detected especially between 2008 and 2013. The LST was derived from modelling NDVIs, from which emmisivity was calculated and then the LST was estimated. There was an inverse regression (r2=0.65) with a high correlation (r=0.806) between NDVI and LST. With urbanization, the natural and agricultural land was converted into settlements resulting in lower NDVIs and higher land surface temperatures. It was concluded that urbanization, amongst others can therefore definitely contribute to global warming. Keywords: Malawi, land cover, land use, emissivity, normalized vegetation index, land surface temperature Cite this Article Gondwe Steven VC, Richard Muchena, Jerome Boys. Detecting Land Use and Land Cover and Land Surface Temperature Change in Lilongwe City, Malawi. Journal of Remote Sensing & GIS. 2018; 9(2): 17–26p.","PeriodicalId":427440,"journal":{"name":"Journal of Remote Sensing & GIS","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detecting Land Use and Land Cover and Land Surface Temperature Change in Lilongwe City, Malawi\",\"authors\":\"S. Gondwe, Richard Muchena, Jerome Boys\",\"doi\":\"10.37591/.V9I2.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In south east Africa, Lilongwe city had an observed rapid population growth over the past decade and a half. The same city also had recently observed increased temperatures and adverse weather conditions such as occassional heavy storms which caused severe flooding in January 2017 and December 2017. It was therefore thought wise to do a land use and land cover (LULC) study of the city over time to detect land cover changes and its effect on land surface temperatures (LST). Landsat imagery was acquired for the year(s) 2008, 2013 and 2017 and it was classified to detect LULC changes for these given years. A significant (P<0.05) expansion of the city was detected especially between 2008 and 2013. The LST was derived from modelling NDVIs, from which emmisivity was calculated and then the LST was estimated. There was an inverse regression (r2=0.65) with a high correlation (r=0.806) between NDVI and LST. With urbanization, the natural and agricultural land was converted into settlements resulting in lower NDVIs and higher land surface temperatures. It was concluded that urbanization, amongst others can therefore definitely contribute to global warming. Keywords: Malawi, land cover, land use, emissivity, normalized vegetation index, land surface temperature Cite this Article Gondwe Steven VC, Richard Muchena, Jerome Boys. Detecting Land Use and Land Cover and Land Surface Temperature Change in Lilongwe City, Malawi. Journal of Remote Sensing & GIS. 2018; 9(2): 17–26p.\",\"PeriodicalId\":427440,\"journal\":{\"name\":\"Journal of Remote Sensing & GIS\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Remote Sensing & GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37591/.V9I2.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Remote Sensing & GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37591/.V9I2.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting Land Use and Land Cover and Land Surface Temperature Change in Lilongwe City, Malawi
In south east Africa, Lilongwe city had an observed rapid population growth over the past decade and a half. The same city also had recently observed increased temperatures and adverse weather conditions such as occassional heavy storms which caused severe flooding in January 2017 and December 2017. It was therefore thought wise to do a land use and land cover (LULC) study of the city over time to detect land cover changes and its effect on land surface temperatures (LST). Landsat imagery was acquired for the year(s) 2008, 2013 and 2017 and it was classified to detect LULC changes for these given years. A significant (P<0.05) expansion of the city was detected especially between 2008 and 2013. The LST was derived from modelling NDVIs, from which emmisivity was calculated and then the LST was estimated. There was an inverse regression (r2=0.65) with a high correlation (r=0.806) between NDVI and LST. With urbanization, the natural and agricultural land was converted into settlements resulting in lower NDVIs and higher land surface temperatures. It was concluded that urbanization, amongst others can therefore definitely contribute to global warming. Keywords: Malawi, land cover, land use, emissivity, normalized vegetation index, land surface temperature Cite this Article Gondwe Steven VC, Richard Muchena, Jerome Boys. Detecting Land Use and Land Cover and Land Surface Temperature Change in Lilongwe City, Malawi. Journal of Remote Sensing & GIS. 2018; 9(2): 17–26p.