统一的内存层次结构

B. Alpern, L. Carter, E. Feig
{"title":"统一的内存层次结构","authors":"B. Alpern, L. Carter, E. Feig","doi":"10.1109/FSCS.1990.89581","DOIUrl":null,"url":null,"abstract":"The authors introduce a model, called the uniform memory hierarchy (UMH) model, which reflects the hierarchical nature of computer memory more accurately than the RAM (random-access-machine) model, which assumes that any item in memory can be accessed with unit cost. In the model memory occurs as a sequence of increasingly large levels. Data are transferred between levels in fixed-size blocks (the size is level dependent). Within a level blocks are random access. The model is easily extended to handle parallelism. The UMH model is really a family of models parameterized by the rate at which the bandwidth decays as one travels up the hierarchy. A program is parsimonious on a UMH if the leading terms of the program's (time) complexity on the UMH and on a RAM are identical. If these terms differ by more than a constant factor, then the program is inefficient. The authors analyze two standard FFT programs with the same RAM complexity. One is efficient; the other is not.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"438 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Uniform memory hierarchies\",\"authors\":\"B. Alpern, L. Carter, E. Feig\",\"doi\":\"10.1109/FSCS.1990.89581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors introduce a model, called the uniform memory hierarchy (UMH) model, which reflects the hierarchical nature of computer memory more accurately than the RAM (random-access-machine) model, which assumes that any item in memory can be accessed with unit cost. In the model memory occurs as a sequence of increasingly large levels. Data are transferred between levels in fixed-size blocks (the size is level dependent). Within a level blocks are random access. The model is easily extended to handle parallelism. The UMH model is really a family of models parameterized by the rate at which the bandwidth decays as one travels up the hierarchy. A program is parsimonious on a UMH if the leading terms of the program's (time) complexity on the UMH and on a RAM are identical. If these terms differ by more than a constant factor, then the program is inefficient. The authors analyze two standard FFT programs with the same RAM complexity. One is efficient; the other is not.<<ETX>>\",\"PeriodicalId\":271949,\"journal\":{\"name\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"volume\":\"438 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSCS.1990.89581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

该模型比随机存取机(RAM)模型更准确地反映了计算机存储器的层次特性,随机存取机假设存储器中的任何项目都可以以单位成本访问。在模型中,记忆是一个越来越大的层次序列。数据以固定大小的块在级别之间传输(大小取决于级别)。关卡中的方块是随机访问的。该模型易于扩展以处理并行性。UMH模型实际上是一系列模型的参数化,这些模型的参数化是随着层次结构的上升,带宽衰减的速率。如果程序在UMH和RAM上的(时间)复杂度的领先项相同,则程序在UMH上是节俭的。如果这些项相差超过一个常数因子,则程序是低效的。作者分析了两个具有相同内存复杂度的标准FFT程序。一个是效率;另一个则不是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uniform memory hierarchies
The authors introduce a model, called the uniform memory hierarchy (UMH) model, which reflects the hierarchical nature of computer memory more accurately than the RAM (random-access-machine) model, which assumes that any item in memory can be accessed with unit cost. In the model memory occurs as a sequence of increasingly large levels. Data are transferred between levels in fixed-size blocks (the size is level dependent). Within a level blocks are random access. The model is easily extended to handle parallelism. The UMH model is really a family of models parameterized by the rate at which the bandwidth decays as one travels up the hierarchy. A program is parsimonious on a UMH if the leading terms of the program's (time) complexity on the UMH and on a RAM are identical. If these terms differ by more than a constant factor, then the program is inefficient. The authors analyze two standard FFT programs with the same RAM complexity. One is efficient; the other is not.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online algorithms for finger searching Multiple non-interactive zero knowledge proofs based on a single random string Simple construction of almost k-wise independent random variables On the diameter of finite groups Drawing graphs in the plane with high resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1