用于微电子基板容器的热塑性聚合物和纳米复合材料中氨气的输运系数

M. Tran, P. González-Aguirre, C. Beitia, J. Lundgren, S. Moon, H. Fontaine
{"title":"用于微电子基板容器的热塑性聚合物和纳米复合材料中氨气的输运系数","authors":"M. Tran, P. González-Aguirre, C. Beitia, J. Lundgren, S. Moon, H. Fontaine","doi":"10.4028/www.scientific.net/DF.27.63","DOIUrl":null,"url":null,"abstract":"Polymeric plastic boxes (named Front Opening Unified Pods (FOUP)) were widely used in semiconductor manufacture to maintain the cleanliness of processed wafer substrates in a controlled mini-environment. Polymeric materials, however, are able to sorb airborne molecular contaminants (AMCs) and subsequently to outgas the sorbed AMCs backward to FOUP’s atmosphere, causing the transfer of AMCs to sensitive stored substrates, named cross-contamination. As a type of AMCs, the NH3 cross-contamination could cause a severe yield loss to integrated circuits (crystals (haze), resist-development defects (T-topping) or metallic corrosion). Experiments were carried out to establish the NH3 sorption and desorption kinetics in polyetherimide (PEI), Entegris Barrier Material (EBM)), and EBM/carbon nanotubes (EBMCNT) at NH3 concentration of 800-ppbv, 21°C, and relative humidity of 40%. The transport coefficients i.e. solubility and diffusivity (DNH3 and SNH3) were then determined. The study on NH3 provides an additional guideline to choose the best raw materials for FOUP formulation in taking into account the potential cross-contamination of AMCs. Numerical simulation model based on obtained solubility and diffusivity values was conducted to demonstrate NH3 concentration profiles in FOUP walls during contamination and FOUP decontamination, which are inaccessible by conventional experiments.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transport Coefficients of Ammonia Gas in Thermoplastic Polymers and Nanocomposites Used for Microelectronic Substrates Containers\",\"authors\":\"M. Tran, P. González-Aguirre, C. Beitia, J. Lundgren, S. Moon, H. Fontaine\",\"doi\":\"10.4028/www.scientific.net/DF.27.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric plastic boxes (named Front Opening Unified Pods (FOUP)) were widely used in semiconductor manufacture to maintain the cleanliness of processed wafer substrates in a controlled mini-environment. Polymeric materials, however, are able to sorb airborne molecular contaminants (AMCs) and subsequently to outgas the sorbed AMCs backward to FOUP’s atmosphere, causing the transfer of AMCs to sensitive stored substrates, named cross-contamination. As a type of AMCs, the NH3 cross-contamination could cause a severe yield loss to integrated circuits (crystals (haze), resist-development defects (T-topping) or metallic corrosion). Experiments were carried out to establish the NH3 sorption and desorption kinetics in polyetherimide (PEI), Entegris Barrier Material (EBM)), and EBM/carbon nanotubes (EBMCNT) at NH3 concentration of 800-ppbv, 21°C, and relative humidity of 40%. The transport coefficients i.e. solubility and diffusivity (DNH3 and SNH3) were then determined. The study on NH3 provides an additional guideline to choose the best raw materials for FOUP formulation in taking into account the potential cross-contamination of AMCs. Numerical simulation model based on obtained solubility and diffusivity values was conducted to demonstrate NH3 concentration profiles in FOUP walls during contamination and FOUP decontamination, which are inaccessible by conventional experiments.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.27.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.27.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚合物塑料盒(称为前开口统一吊舱(FOUP))广泛应用于半导体制造,以在受控的微型环境中保持加工过的晶圆基板的清洁度。然而,聚合物材料能够吸收空气中的分子污染物(AMCs),随后将吸收的AMCs释放到FOUP的大气中,导致AMCs转移到敏感的储存底物,称为交叉污染。NH3交叉污染作为一种amc,会对集成电路造成严重的成品率损失(晶体(雾)、电阻发育缺陷(T-topping)或金属腐蚀)。在NH3浓度为800 ppbv、21℃、相对湿度为40%的条件下,研究了聚醚酰亚胺(PEI)、integris屏障材料(EBM)和EBM/碳纳米管(EBMCNT)对NH3的吸附和解吸动力学。然后测定了输运系数,即溶解度和扩散系数(DNH3和SNH3)。NH3的研究为在考虑AMCs潜在交叉污染的情况下选择最佳的FOUP原料提供了额外的指导。基于获得的溶解度和扩散系数数值模拟模型,展示了污染和净化过程中FOUP壁面的NH3浓度分布,这是常规实验无法获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transport Coefficients of Ammonia Gas in Thermoplastic Polymers and Nanocomposites Used for Microelectronic Substrates Containers
Polymeric plastic boxes (named Front Opening Unified Pods (FOUP)) were widely used in semiconductor manufacture to maintain the cleanliness of processed wafer substrates in a controlled mini-environment. Polymeric materials, however, are able to sorb airborne molecular contaminants (AMCs) and subsequently to outgas the sorbed AMCs backward to FOUP’s atmosphere, causing the transfer of AMCs to sensitive stored substrates, named cross-contamination. As a type of AMCs, the NH3 cross-contamination could cause a severe yield loss to integrated circuits (crystals (haze), resist-development defects (T-topping) or metallic corrosion). Experiments were carried out to establish the NH3 sorption and desorption kinetics in polyetherimide (PEI), Entegris Barrier Material (EBM)), and EBM/carbon nanotubes (EBMCNT) at NH3 concentration of 800-ppbv, 21°C, and relative humidity of 40%. The transport coefficients i.e. solubility and diffusivity (DNH3 and SNH3) were then determined. The study on NH3 provides an additional guideline to choose the best raw materials for FOUP formulation in taking into account the potential cross-contamination of AMCs. Numerical simulation model based on obtained solubility and diffusivity values was conducted to demonstrate NH3 concentration profiles in FOUP walls during contamination and FOUP decontamination, which are inaccessible by conventional experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetics and Thermodynamics of Fe-X (X= Al, Cr, Mn, Ti, B, and C) Melts under High Pressure Fundamental Core Effects in Transition Metal High-Entropy Alloys: “High-Entropy” and “Sluggish Diffusion” Effects Novel Interdiffusion Analysis in Multicomponent Alloys - Part 1: Application to Ternary Alloys Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds History and People of Solid-State Diffusion – An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1