改进的自私羊群优化器的功能优化

Ruxin Zhao, Yongli Wang, Chang Liu, Peng Hu, Yanchao Li, Hao Li, Chi Yuan
{"title":"改进的自私羊群优化器的功能优化","authors":"Ruxin Zhao, Yongli Wang, Chang Liu, Peng Hu, Yanchao Li, Hao Li, Chi Yuan","doi":"10.1142/s1469026820500030","DOIUrl":null,"url":null,"abstract":"Selfish herd optimizer (SHO) is a new optimization algorithm. However, its optimization performance is not satisfactory. The main reason for this phenomenon is the weak global search ability of SHO. In this paper, in order to increase the global search ability of SHO, we add Levy-flight distribution strategy. To verify the performance of the proposed algorithm, we use 10 benchmark functions as test cases. Experiment results show that our algorithm is more competitive.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified Selfish Herd Optimizer for Function Optimization\",\"authors\":\"Ruxin Zhao, Yongli Wang, Chang Liu, Peng Hu, Yanchao Li, Hao Li, Chi Yuan\",\"doi\":\"10.1142/s1469026820500030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selfish herd optimizer (SHO) is a new optimization algorithm. However, its optimization performance is not satisfactory. The main reason for this phenomenon is the weak global search ability of SHO. In this paper, in order to increase the global search ability of SHO, we add Levy-flight distribution strategy. To verify the performance of the proposed algorithm, we use 10 benchmark functions as test cases. Experiment results show that our algorithm is more competitive.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自私群优化算法(SHO)是一种新的优化算法。然而,其优化性能并不令人满意。造成这种现象的主要原因是SHO的全局搜索能力较弱。在本文中,为了提高SHO的全局搜索能力,我们加入了Levy-flight分配策略。为了验证所提出算法的性能,我们使用了10个基准函数作为测试用例。实验结果表明,该算法具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified Selfish Herd Optimizer for Function Optimization
Selfish herd optimizer (SHO) is a new optimization algorithm. However, its optimization performance is not satisfactory. The main reason for this phenomenon is the weak global search ability of SHO. In this paper, in order to increase the global search ability of SHO, we add Levy-flight distribution strategy. To verify the performance of the proposed algorithm, we use 10 benchmark functions as test cases. Experiment results show that our algorithm is more competitive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology Styling Classification of Group Photos Fusing Head and Pose Features Genetic Algorithm-Based Optimal Resource Trust Line Prediction in Cloud Computing Shearlet Transform-Based Novel Method for Multimodality Medical Image Fusion Using Deep Learning An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1