基于交点的关联数据轨迹空间标注

T. P. Nogueira, H. Martin, Rossana M. C. Andrade
{"title":"基于交点的关联数据轨迹空间标注","authors":"T. P. Nogueira, H. Martin, Rossana M. C. Andrade","doi":"10.5753/wbci.2019.6750","DOIUrl":null,"url":null,"abstract":"Smart cities are characterized by providing new services through Information and Communications Technologies. However, it is important to gather data from citizens to discover new knowledge about certain aspects of a city. One example of a rich domain for collecting data in a smart city is exploring the use of mobile fitness applications. Users usually record outdoor activities in the form of trajectories, which can later be acquired for further analysis. In this work, we leverage Semantic Web technologies to propose an annotation algorithm that segments trajectories according to their spatial context. We demonstrate how the method works and the impact of OpenStreetMap related ontologies in the annotation process.","PeriodicalId":218600,"journal":{"name":"Anais do Workshop Brasileiro de Cidades Inteligentes (WBCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection-based Spatial Annotation of Trajectories with Linked Data\",\"authors\":\"T. P. Nogueira, H. Martin, Rossana M. C. Andrade\",\"doi\":\"10.5753/wbci.2019.6750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart cities are characterized by providing new services through Information and Communications Technologies. However, it is important to gather data from citizens to discover new knowledge about certain aspects of a city. One example of a rich domain for collecting data in a smart city is exploring the use of mobile fitness applications. Users usually record outdoor activities in the form of trajectories, which can later be acquired for further analysis. In this work, we leverage Semantic Web technologies to propose an annotation algorithm that segments trajectories according to their spatial context. We demonstrate how the method works and the impact of OpenStreetMap related ontologies in the annotation process.\",\"PeriodicalId\":218600,\"journal\":{\"name\":\"Anais do Workshop Brasileiro de Cidades Inteligentes (WBCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Workshop Brasileiro de Cidades Inteligentes (WBCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wbci.2019.6750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Workshop Brasileiro de Cidades Inteligentes (WBCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wbci.2019.6750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智慧城市的特点是通过信息和通信技术提供新的服务。然而,从市民那里收集数据以发现关于城市某些方面的新知识是很重要的。在智慧城市中收集数据的一个丰富领域是探索移动健身应用程序的使用。用户通常以轨迹的形式记录户外活动,以后可以获得这些轨迹以作进一步分析。在这项工作中,我们利用语义网技术提出了一种注释算法,该算法根据空间上下文对轨迹进行分段。我们演示了该方法是如何工作的,以及OpenStreetMap相关本体在注释过程中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intersection-based Spatial Annotation of Trajectories with Linked Data
Smart cities are characterized by providing new services through Information and Communications Technologies. However, it is important to gather data from citizens to discover new knowledge about certain aspects of a city. One example of a rich domain for collecting data in a smart city is exploring the use of mobile fitness applications. Users usually record outdoor activities in the form of trajectories, which can later be acquired for further analysis. In this work, we leverage Semantic Web technologies to propose an annotation algorithm that segments trajectories according to their spatial context. We demonstrate how the method works and the impact of OpenStreetMap related ontologies in the annotation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aplicação de Algoritmos Heurísticos na Otimização de Rotas Comerciais em Tempo Real Produto Mínimo Viável para Monitoramento Elétrico em Smart Homes Uma Abordagem Baseada em Perfil e Recomendação para Relatar Problemas de Infraestrutura no contexto de Smart Campus A Review on the Adoption of Agile Methods in the Technology Development for Smart Cities Análise de Desempenho de Metaheurísticas Aplicadas ao Problema de Restauração de Redes de Distribuição
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1