一种基于二维CCA的信号+彩色图像混合分离方法

C. Kexin, Fan Liya, Yang Jing
{"title":"一种基于二维CCA的信号+彩色图像混合分离方法","authors":"C. Kexin, Fan Liya, Yang Jing","doi":"10.1109/PRML52754.2021.9520716","DOIUrl":null,"url":null,"abstract":"Blind Source Separation (BSS) is a traditional and challenging problem in signal processing, in which the mixed signals can be separated according to the independence of source signals. The one-dimensional CCA-based signal and color image mixing and separation method needs to reshape the image into vector data, which destroys the spatial structure of the image and affects the recovery effect of the color image. To this end, a mixing and separation method of signals + color images based on two-dimensional CCA, in this paper, is proposed. This method utilizes the auto-correlation among original color images and signals to recover signals and images with high qualities. Comparative experiments with one-dimensional CCA on the COIL-100 data set show that the proposed method is effective and high-speed.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixing and Separation Method of Signals + Color Images Based on Two-Dimensional CCA\",\"authors\":\"C. Kexin, Fan Liya, Yang Jing\",\"doi\":\"10.1109/PRML52754.2021.9520716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind Source Separation (BSS) is a traditional and challenging problem in signal processing, in which the mixed signals can be separated according to the independence of source signals. The one-dimensional CCA-based signal and color image mixing and separation method needs to reshape the image into vector data, which destroys the spatial structure of the image and affects the recovery effect of the color image. To this end, a mixing and separation method of signals + color images based on two-dimensional CCA, in this paper, is proposed. This method utilizes the auto-correlation among original color images and signals to recover signals and images with high qualities. Comparative experiments with one-dimensional CCA on the COIL-100 data set show that the proposed method is effective and high-speed.\",\"PeriodicalId\":429603,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRML52754.2021.9520716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

盲源分离(BSS)是信号处理中的一个传统问题,也是一个具有挑战性的问题,它可以根据源信号的独立性对混合信号进行分离。基于一维ca的信号与彩色图像混合分离方法需要将图像重塑为矢量数据,破坏了图像的空间结构,影响了彩色图像的恢复效果。为此,本文提出了一种基于二维CCA的信号+彩色图像混合分离方法。该方法利用原始彩色图像和信号之间的自相关,恢复出高质量的信号和图像。在COIL-100数据集上与一维CCA的对比实验表明,该方法是有效且高速的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Mixing and Separation Method of Signals + Color Images Based on Two-Dimensional CCA
Blind Source Separation (BSS) is a traditional and challenging problem in signal processing, in which the mixed signals can be separated according to the independence of source signals. The one-dimensional CCA-based signal and color image mixing and separation method needs to reshape the image into vector data, which destroys the spatial structure of the image and affects the recovery effect of the color image. To this end, a mixing and separation method of signals + color images based on two-dimensional CCA, in this paper, is proposed. This method utilizes the auto-correlation among original color images and signals to recover signals and images with high qualities. Comparative experiments with one-dimensional CCA on the COIL-100 data set show that the proposed method is effective and high-speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Robot for Cleaning Garbage Based on OpenCV Research on Tibetan-Chinese Machine Translation Based on Multi-Strategy Processing A Survey of Object Detection Based on CNN and Transformer A Review of Segmentation and Classification for Retinal Optical Coherence Tomography Images Research on the Methods of Speech Synthesis Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1