基于动态稀疏感知的水平集估计

Jing Yang, Zuoen Wang, Jingxian Wu
{"title":"基于动态稀疏感知的水平集估计","authors":"Jing Yang, Zuoen Wang, Jingxian Wu","doi":"10.1109/GlobalSIP.2014.7032165","DOIUrl":null,"url":null,"abstract":"In this paper, we study the level set estimation of a spatial-temporally correlated random field by using a small number of spatially distributed sensors. The level sets of a random field are defined as regions where data values exceed a certain threshold. We propose a new active sparse sensing and inference scheme, which can accurately extract level sets in a large random field with a small number of sensors strategically and sparsely placed in the random field. In the proposed active sparse sensing scheme, a central controller dynamically selects a small number of sensing locations according to the information revealed from past measurements, with the objective to minimize the expected level set estimation errors. The expected estimation error is explicitly expressed as a function of the sensing locations, and the results are used to formulate optimal and sub-optimal selection of sensing locations. Simulation results demonstrate that the proposed algorithms can achieve significant performance gains over baseline passive sensing algorithms that do not proactively select the sensing locations.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Level set estimation with dynamic sparse sensing\",\"authors\":\"Jing Yang, Zuoen Wang, Jingxian Wu\",\"doi\":\"10.1109/GlobalSIP.2014.7032165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the level set estimation of a spatial-temporally correlated random field by using a small number of spatially distributed sensors. The level sets of a random field are defined as regions where data values exceed a certain threshold. We propose a new active sparse sensing and inference scheme, which can accurately extract level sets in a large random field with a small number of sensors strategically and sparsely placed in the random field. In the proposed active sparse sensing scheme, a central controller dynamically selects a small number of sensing locations according to the information revealed from past measurements, with the objective to minimize the expected level set estimation errors. The expected estimation error is explicitly expressed as a function of the sensing locations, and the results are used to formulate optimal and sub-optimal selection of sensing locations. Simulation results demonstrate that the proposed algorithms can achieve significant performance gains over baseline passive sensing algorithms that do not proactively select the sensing locations.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用少量空间分布的传感器,研究了时空相关随机场的水平集估计问题。随机场的水平集被定义为数据值超过一定阈值的区域。我们提出了一种新的主动稀疏感知和推理方案,该方案可以在大随机场中精确地提取水平集,并且在随机场中策略性地稀疏放置少量传感器。在本文提出的主动稀疏感知方案中,中央控制器根据过去的测量信息动态选择少量的感知位置,目标是最小化期望的水平集估计误差。将期望估计误差明确表示为传感位置的函数,并将结果用于制定传感位置的最优和次优选择。仿真结果表明,与不主动选择传感位置的基线被动传感算法相比,所提出的算法可以获得显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Level set estimation with dynamic sparse sensing
In this paper, we study the level set estimation of a spatial-temporally correlated random field by using a small number of spatially distributed sensors. The level sets of a random field are defined as regions where data values exceed a certain threshold. We propose a new active sparse sensing and inference scheme, which can accurately extract level sets in a large random field with a small number of sensors strategically and sparsely placed in the random field. In the proposed active sparse sensing scheme, a central controller dynamically selects a small number of sensing locations according to the information revealed from past measurements, with the objective to minimize the expected level set estimation errors. The expected estimation error is explicitly expressed as a function of the sensing locations, and the results are used to formulate optimal and sub-optimal selection of sensing locations. Simulation results demonstrate that the proposed algorithms can achieve significant performance gains over baseline passive sensing algorithms that do not proactively select the sensing locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competitive design of power allocation strategies for energy harvesting wireless communication systems Correction of over-exposure using color channel correlations Communications meets copula modeling: Non-standard dependence features in wireless fading channels Energy efficient and low complex wireless communication Feasibility of positive secrecy rate in wiretap interference channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1