{"title":"应用于注射成型工艺的设计灵敏度分析:注射压力和多浇口位置优化","authors":"K. Kabanemi, J. Hétu, A. Derdouri","doi":"10.1115/imece2000-1223","DOIUrl":null,"url":null,"abstract":"\n In this work, we develop a numerical simulation method to optimize the injection molding process using the design sensitivity analysis (DSA). The optimization concerns the filling stage and focuses on the number and location of gates in a mold cavity as well as the injection pressure, considered as one of the key processing parameters, in order to minimize the fill time. Since the problem to be solved involves transient flow with free surfaces, the direct differentiation method is used to evaluate the sensitivities of the Hele-Shaw, filling fraction and the energy equations with respect to the design variables used in the analysis. The mesh domain parameterization is coped with using B-spline functions. Sensitivity equations are solved by means of finite element method. The proposed numerical approach is combined with the sequential linear and quadratic programming method of the DOT optimization tools to find the new design variables at each iteration. Starting with any initial gate locations and injection pressure profile, the method enables us to find the optimal gate locations together with the optimal injection pressure profile. Finally, numerical results involving complex mold geometries are presented and discussed to assess the validity and robustness of the proposed method.","PeriodicalId":198750,"journal":{"name":"CAE and Related Innovations for Polymer Processing","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Sensitivity Analysis Applied to Injection Molding Process: Injection Pressure and Multi-Gate Location Optimization\",\"authors\":\"K. Kabanemi, J. Hétu, A. Derdouri\",\"doi\":\"10.1115/imece2000-1223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, we develop a numerical simulation method to optimize the injection molding process using the design sensitivity analysis (DSA). The optimization concerns the filling stage and focuses on the number and location of gates in a mold cavity as well as the injection pressure, considered as one of the key processing parameters, in order to minimize the fill time. Since the problem to be solved involves transient flow with free surfaces, the direct differentiation method is used to evaluate the sensitivities of the Hele-Shaw, filling fraction and the energy equations with respect to the design variables used in the analysis. The mesh domain parameterization is coped with using B-spline functions. Sensitivity equations are solved by means of finite element method. The proposed numerical approach is combined with the sequential linear and quadratic programming method of the DOT optimization tools to find the new design variables at each iteration. Starting with any initial gate locations and injection pressure profile, the method enables us to find the optimal gate locations together with the optimal injection pressure profile. Finally, numerical results involving complex mold geometries are presented and discussed to assess the validity and robustness of the proposed method.\",\"PeriodicalId\":198750,\"journal\":{\"name\":\"CAE and Related Innovations for Polymer Processing\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAE and Related Innovations for Polymer Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAE and Related Innovations for Polymer Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Sensitivity Analysis Applied to Injection Molding Process: Injection Pressure and Multi-Gate Location Optimization
In this work, we develop a numerical simulation method to optimize the injection molding process using the design sensitivity analysis (DSA). The optimization concerns the filling stage and focuses on the number and location of gates in a mold cavity as well as the injection pressure, considered as one of the key processing parameters, in order to minimize the fill time. Since the problem to be solved involves transient flow with free surfaces, the direct differentiation method is used to evaluate the sensitivities of the Hele-Shaw, filling fraction and the energy equations with respect to the design variables used in the analysis. The mesh domain parameterization is coped with using B-spline functions. Sensitivity equations are solved by means of finite element method. The proposed numerical approach is combined with the sequential linear and quadratic programming method of the DOT optimization tools to find the new design variables at each iteration. Starting with any initial gate locations and injection pressure profile, the method enables us to find the optimal gate locations together with the optimal injection pressure profile. Finally, numerical results involving complex mold geometries are presented and discussed to assess the validity and robustness of the proposed method.