多层次图像质量评价的级联框架

Haishan Zhang, Xiaonan Liu
{"title":"多层次图像质量评价的级联框架","authors":"Haishan Zhang, Xiaonan Liu","doi":"10.1109/ICCCS49078.2020.9118560","DOIUrl":null,"url":null,"abstract":"Due to the light interference, mobile terminal iris recognition on the visible light cannot accurately extract texture information that used for iris recognition. In order to solve the problem, image quality evaluation is used to ensure that the iris image quality meets the recognition needs, find an excellent and complete iris structure, and extract the iris texture information to complete the matching. In this paper, a multi-level quality evaluation cascade framework is designed. This paper preprocesses the iris image, and then uses the Tenegrad evaluation function to complete the first level image quality evaluation, and then uses the wavelet transform and BP neural network to accomplish the second level image quality evaluation. To test the effectiveness of the algorithm, 900 iris images in the UBIRIS.v2 iris gallery are used for testing. The accuracy of quality evaluation is 96.1%. The result shows that the method can correctly evaluate the iris image quality, exclude the images that cannot be used for iris recognition, and effectively improve iris recognition on the mobile terminal.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascading Framework for Multi-level Image Quality Evaluation\",\"authors\":\"Haishan Zhang, Xiaonan Liu\",\"doi\":\"10.1109/ICCCS49078.2020.9118560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the light interference, mobile terminal iris recognition on the visible light cannot accurately extract texture information that used for iris recognition. In order to solve the problem, image quality evaluation is used to ensure that the iris image quality meets the recognition needs, find an excellent and complete iris structure, and extract the iris texture information to complete the matching. In this paper, a multi-level quality evaluation cascade framework is designed. This paper preprocesses the iris image, and then uses the Tenegrad evaluation function to complete the first level image quality evaluation, and then uses the wavelet transform and BP neural network to accomplish the second level image quality evaluation. To test the effectiveness of the algorithm, 900 iris images in the UBIRIS.v2 iris gallery are used for testing. The accuracy of quality evaluation is 96.1%. The result shows that the method can correctly evaluate the iris image quality, exclude the images that cannot be used for iris recognition, and effectively improve iris recognition on the mobile terminal.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于光的干扰,移动终端虹膜识别对可见光无法准确提取用于虹膜识别的纹理信息。为了解决这一问题,采用图像质量评价的方法,保证虹膜图像质量满足识别需求,寻找优秀完整的虹膜结构,提取虹膜纹理信息,完成匹配。本文设计了一个多层次质量评价级联框架。本文对虹膜图像进行预处理,然后利用teneggrad评价函数完成第一级图像质量评价,然后利用小波变换和BP神经网络完成第二级图像质量评价。为了测试算法的有效性,在UBIRIS中使用了900幅虹膜图像。使用V2虹膜图库进行测试。质量评价准确率为96.1%。结果表明,该方法能够正确评价虹膜图像质量,排除不能用于虹膜识别的图像,有效提高移动终端上的虹膜识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascading Framework for Multi-level Image Quality Evaluation
Due to the light interference, mobile terminal iris recognition on the visible light cannot accurately extract texture information that used for iris recognition. In order to solve the problem, image quality evaluation is used to ensure that the iris image quality meets the recognition needs, find an excellent and complete iris structure, and extract the iris texture information to complete the matching. In this paper, a multi-level quality evaluation cascade framework is designed. This paper preprocesses the iris image, and then uses the Tenegrad evaluation function to complete the first level image quality evaluation, and then uses the wavelet transform and BP neural network to accomplish the second level image quality evaluation. To test the effectiveness of the algorithm, 900 iris images in the UBIRIS.v2 iris gallery are used for testing. The accuracy of quality evaluation is 96.1%. The result shows that the method can correctly evaluate the iris image quality, exclude the images that cannot be used for iris recognition, and effectively improve iris recognition on the mobile terminal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1