{"title":"基于单类分类的半监督广义VAE异常检测框架","authors":"Renuka Sharma, Satvik Mashkaria, Suyash P. Awate","doi":"10.1109/WACV51458.2022.00137","DOIUrl":null,"url":null,"abstract":"Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Semi-supervised Generalized VAE Framework for Abnormality Detection using One-Class Classification\",\"authors\":\"Renuka Sharma, Satvik Mashkaria, Suyash P. Awate\",\"doi\":\"10.1109/WACV51458.2022.00137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Semi-supervised Generalized VAE Framework for Abnormality Detection using One-Class Classification
Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.