基于Hopfield神经网络的ATM小区调度最大尺寸匹配方法

Shujing Hu, Jinyuan Sehn, Runjie Liu, Wenying Zhang, Weixin Mu
{"title":"基于Hopfield神经网络的ATM小区调度最大尺寸匹配方法","authors":"Shujing Hu, Jinyuan Sehn, Runjie Liu, Wenying Zhang, Weixin Mu","doi":"10.1109/KAMW.2008.4810566","DOIUrl":null,"url":null,"abstract":"Maximum size matching (MSM) cell scheduling in the ATM switching fabrics (ASF) with virtual output queuing (VOQ) is complied by a new Hopfield neural network (HNN). A new energy function of HNN is proposed to correspond to the cell scheduling rules of MSM. The new HNN scheduling algorithm employs all cells updated synchronously and realizes the MSM of the cells with global optimal between input queues and output queues in a single time slot. This difference from the iSLIP and FIRM algorithms makes it have better performances. The simulation results of 8*8 and 16*16' ASF, compared with iSLIP and FIRM methods, demonstrate that the proposed algorithm has faster convergence speed and reduces the mean delay greatly without the throughput degradation.","PeriodicalId":375613,"journal":{"name":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Size Matching Method Realized by Hopfield Neural Network for ATM cell scheduling\",\"authors\":\"Shujing Hu, Jinyuan Sehn, Runjie Liu, Wenying Zhang, Weixin Mu\",\"doi\":\"10.1109/KAMW.2008.4810566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum size matching (MSM) cell scheduling in the ATM switching fabrics (ASF) with virtual output queuing (VOQ) is complied by a new Hopfield neural network (HNN). A new energy function of HNN is proposed to correspond to the cell scheduling rules of MSM. The new HNN scheduling algorithm employs all cells updated synchronously and realizes the MSM of the cells with global optimal between input queues and output queues in a single time slot. This difference from the iSLIP and FIRM algorithms makes it have better performances. The simulation results of 8*8 and 16*16' ASF, compared with iSLIP and FIRM methods, demonstrate that the proposed algorithm has faster convergence speed and reduces the mean delay greatly without the throughput degradation.\",\"PeriodicalId\":375613,\"journal\":{\"name\":\"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAMW.2008.4810566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAMW.2008.4810566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用一种新的Hopfield神经网络(HNN)实现了具有虚拟输出排队(VOQ)的ATM交换结构(ASF)中的最大尺寸匹配(MSM)单元调度。针对MSM的单元调度规则,提出了一种新的HNN能量函数。新的HNN调度算法采用所有单元同步更新的方式,在单个时隙内实现输入队列和输出队列之间全局最优单元的MSM。这种与iSLIP和FIRM算法的区别使其具有更好的性能。8*8和16*16' ASF的仿真结果与iSLIP和FIRM方法进行了比较,结果表明该算法具有更快的收敛速度,在不降低吞吐量的情况下大大降低了平均延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum Size Matching Method Realized by Hopfield Neural Network for ATM cell scheduling
Maximum size matching (MSM) cell scheduling in the ATM switching fabrics (ASF) with virtual output queuing (VOQ) is complied by a new Hopfield neural network (HNN). A new energy function of HNN is proposed to correspond to the cell scheduling rules of MSM. The new HNN scheduling algorithm employs all cells updated synchronously and realizes the MSM of the cells with global optimal between input queues and output queues in a single time slot. This difference from the iSLIP and FIRM algorithms makes it have better performances. The simulation results of 8*8 and 16*16' ASF, compared with iSLIP and FIRM methods, demonstrate that the proposed algorithm has faster convergence speed and reduces the mean delay greatly without the throughput degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Status, Causes and Intervention Strategies of Soccer Violence in Chinese Professional Football League Simulation of Forest Fire Extinguishing with Pneumatic Extinguisher Based on Multi-Agent Summarization Based on Event-cluster An Algorithm of Mean Quantification Digital Watermarking based on Lifting Wavelet Coefficients Research of Knowledge Acquisition and Modeling Method Based on Patent Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1