使用变长马尔可夫模型学习结构化行为模型

Aphrodite Galata, Neil Johnson, D. Hogg
{"title":"使用变长马尔可夫模型学习结构化行为模型","authors":"Aphrodite Galata, Neil Johnson, D. Hogg","doi":"10.1109/PEOPLE.1999.798351","DOIUrl":null,"url":null,"abstract":"In recent years there has been an increased interest in the modelling and recognition of human activities involving highly structured and semantically rich behaviour such as dance, aerobics, and sign language. A novel approach is presented for automatically acquiring stochastic models of the high-level structure of an activity without the assumption of any prior knowledge. The process involves temporal segmentation into plausible atomic behaviour components and the use of variable length Markov models for the efficient representation of behaviours. Experimental results are presented which demonstrate the generation of realistic sample behaviours and evaluate the performance of models for long-term temporal prediction.","PeriodicalId":237701,"journal":{"name":"Proceedings IEEE International Workshop on Modelling People. MPeople'99","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Learning structured behaviour models using variable length Markov models\",\"authors\":\"Aphrodite Galata, Neil Johnson, D. Hogg\",\"doi\":\"10.1109/PEOPLE.1999.798351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years there has been an increased interest in the modelling and recognition of human activities involving highly structured and semantically rich behaviour such as dance, aerobics, and sign language. A novel approach is presented for automatically acquiring stochastic models of the high-level structure of an activity without the assumption of any prior knowledge. The process involves temporal segmentation into plausible atomic behaviour components and the use of variable length Markov models for the efficient representation of behaviours. Experimental results are presented which demonstrate the generation of realistic sample behaviours and evaluate the performance of models for long-term temporal prediction.\",\"PeriodicalId\":237701,\"journal\":{\"name\":\"Proceedings IEEE International Workshop on Modelling People. MPeople'99\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Workshop on Modelling People. MPeople'99\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEOPLE.1999.798351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Workshop on Modelling People. MPeople'99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOPLE.1999.798351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

近年来,人们对人类活动的建模和识别越来越感兴趣,这些活动涉及高度结构化和语义丰富的行为,如舞蹈、有氧运动和手语。提出了一种无需假设任何先验知识就能自动获取活动高层结构随机模型的新方法。这个过程包括将时间分割成合理的原子行为组件,并使用变长马尔可夫模型来有效地表示行为。实验结果证明了真实样本行为的产生,并评估了模型长期时间预测的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning structured behaviour models using variable length Markov models
In recent years there has been an increased interest in the modelling and recognition of human activities involving highly structured and semantically rich behaviour such as dance, aerobics, and sign language. A novel approach is presented for automatically acquiring stochastic models of the high-level structure of an activity without the assumption of any prior knowledge. The process involves temporal segmentation into plausible atomic behaviour components and the use of variable length Markov models for the efficient representation of behaviours. Experimental results are presented which demonstrate the generation of realistic sample behaviours and evaluate the performance of models for long-term temporal prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards model-based capture of a persons shape, appearance and motion Stochastic temporal models of human activities An improved algorithm for reconstruction of the surface of the human body from 3D scanner data using local B-spline patches Real-time, 3D estimation of human body postures from trinocular images Real time tracking and modeling of faces: an EKF-based analysis by synthesis approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1