{"title":"改进协同过滤算法:社交网络中基于情感的方法","authors":"Firas Ben Kharrat, A. Elkhlifi, R. Faiz","doi":"10.4018/IJKSR.2016070107","DOIUrl":null,"url":null,"abstract":"This paper puts forward a new recommendation algorithm based on semantic analysis as well as new measurements. Like Facebook, Social network is considered as one of the most well-prominent Web 2.0 applications and relevant services elaborating into functional ways for sharing opinions. Thereupon, social network web sites have since become valuable data sources for opinion mining. This paper proposes to introduce an external resource a sentiment from comments posted by users in order to anticipate recommendation and also to lessen the cold-start problem. The originality of the suggested approach means that posts are not merely characterized by an opinion score, but receive an opinion grade notion in the post instead. In general, the authors' approach has been implemented with Java and Lenskit framework. The study resulted in two real data sets, namely MovieLens and TripAdvisor, in which the authors have shown positive results. They compared their algorithm to SVD and Slope One algorithms. They have fulfilled an amelioration of 10% in precision and recall along with an improvement of 12% in RMSE and nDCG.","PeriodicalId":296518,"journal":{"name":"Int. J. Knowl. Soc. Res.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving Collaborative Filtering Algorithms: Sentiment-based Approach in Social Network\",\"authors\":\"Firas Ben Kharrat, A. Elkhlifi, R. Faiz\",\"doi\":\"10.4018/IJKSR.2016070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper puts forward a new recommendation algorithm based on semantic analysis as well as new measurements. Like Facebook, Social network is considered as one of the most well-prominent Web 2.0 applications and relevant services elaborating into functional ways for sharing opinions. Thereupon, social network web sites have since become valuable data sources for opinion mining. This paper proposes to introduce an external resource a sentiment from comments posted by users in order to anticipate recommendation and also to lessen the cold-start problem. The originality of the suggested approach means that posts are not merely characterized by an opinion score, but receive an opinion grade notion in the post instead. In general, the authors' approach has been implemented with Java and Lenskit framework. The study resulted in two real data sets, namely MovieLens and TripAdvisor, in which the authors have shown positive results. They compared their algorithm to SVD and Slope One algorithms. They have fulfilled an amelioration of 10% in precision and recall along with an improvement of 12% in RMSE and nDCG.\",\"PeriodicalId\":296518,\"journal\":{\"name\":\"Int. J. Knowl. Soc. Res.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Soc. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJKSR.2016070107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Soc. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKSR.2016070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Collaborative Filtering Algorithms: Sentiment-based Approach in Social Network
This paper puts forward a new recommendation algorithm based on semantic analysis as well as new measurements. Like Facebook, Social network is considered as one of the most well-prominent Web 2.0 applications and relevant services elaborating into functional ways for sharing opinions. Thereupon, social network web sites have since become valuable data sources for opinion mining. This paper proposes to introduce an external resource a sentiment from comments posted by users in order to anticipate recommendation and also to lessen the cold-start problem. The originality of the suggested approach means that posts are not merely characterized by an opinion score, but receive an opinion grade notion in the post instead. In general, the authors' approach has been implemented with Java and Lenskit framework. The study resulted in two real data sets, namely MovieLens and TripAdvisor, in which the authors have shown positive results. They compared their algorithm to SVD and Slope One algorithms. They have fulfilled an amelioration of 10% in precision and recall along with an improvement of 12% in RMSE and nDCG.