E. Sánchez-García, Javier Gorroño, I. Irakulis-Loitxate, D. Varon, L. Guanter
{"title":"利用WorldView-3卫星以非常高的空间分辨率绘制甲烷羽流图","authors":"E. Sánchez-García, Javier Gorroño, I. Irakulis-Loitxate, D. Varon, L. Guanter","doi":"10.5194/amt-2021-238","DOIUrl":null,"url":null,"abstract":"Abstract. The detection of methane emissions from industrial activities has been identified as an effective climate change mitigation strategy. These industrial emissions, such as from oil and gas (O&G) extraction and coal mining, typically occur as large plumes of highly concentrated gas. Different satellite missions have recently shown potential to map such methane plumes from space. In this work, we report on the great potential of the WorldView-3 (WV-3) satellite mission for methane mapping. This relies on its unique very high spatial resolution (up to 3.7 m) data in the shortwave infrared part of the spectrum, which is complemented by a good spectral sampling of the methane absorption feature at 2300 nm and a high signal to noise ratio. The proposed retrieval methodology is based on the calculation of methane concentration enhancements from pixel-wise estimates of methane transmittance at WV-3 SWIR band 7 (2235–2285 nm), which is positioned at a highly-sensitive methane absorption region. A sensitivity analysis based on end-to-end simulations has helped to understand retrieval errors and detection limits. The results have shown the good performance of WV-3 for methane mapping, especially over bright and homogeneous areas. The potential of WV-3 for methane mapping has been further tested with real data, which has led to the detection of 26 independent point emissions over different methane hotspot regions such as the O&G extraction fields in Algeria and Turkmenistan, and the Shanxi coal mining region in China. In particular, the detection of very small leaks (< 100 kg/h) from oil pipelines in Turkmenistan shows the game-changing potential of WV-3 to map industrial methane emissions from space.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite\",\"authors\":\"E. Sánchez-García, Javier Gorroño, I. Irakulis-Loitxate, D. Varon, L. Guanter\",\"doi\":\"10.5194/amt-2021-238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The detection of methane emissions from industrial activities has been identified as an effective climate change mitigation strategy. These industrial emissions, such as from oil and gas (O&G) extraction and coal mining, typically occur as large plumes of highly concentrated gas. Different satellite missions have recently shown potential to map such methane plumes from space. In this work, we report on the great potential of the WorldView-3 (WV-3) satellite mission for methane mapping. This relies on its unique very high spatial resolution (up to 3.7 m) data in the shortwave infrared part of the spectrum, which is complemented by a good spectral sampling of the methane absorption feature at 2300 nm and a high signal to noise ratio. The proposed retrieval methodology is based on the calculation of methane concentration enhancements from pixel-wise estimates of methane transmittance at WV-3 SWIR band 7 (2235–2285 nm), which is positioned at a highly-sensitive methane absorption region. A sensitivity analysis based on end-to-end simulations has helped to understand retrieval errors and detection limits. The results have shown the good performance of WV-3 for methane mapping, especially over bright and homogeneous areas. The potential of WV-3 for methane mapping has been further tested with real data, which has led to the detection of 26 independent point emissions over different methane hotspot regions such as the O&G extraction fields in Algeria and Turkmenistan, and the Shanxi coal mining region in China. In particular, the detection of very small leaks (< 100 kg/h) from oil pipelines in Turkmenistan shows the game-changing potential of WV-3 to map industrial methane emissions from space.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-2021-238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/amt-2021-238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
Abstract. The detection of methane emissions from industrial activities has been identified as an effective climate change mitigation strategy. These industrial emissions, such as from oil and gas (O&G) extraction and coal mining, typically occur as large plumes of highly concentrated gas. Different satellite missions have recently shown potential to map such methane plumes from space. In this work, we report on the great potential of the WorldView-3 (WV-3) satellite mission for methane mapping. This relies on its unique very high spatial resolution (up to 3.7 m) data in the shortwave infrared part of the spectrum, which is complemented by a good spectral sampling of the methane absorption feature at 2300 nm and a high signal to noise ratio. The proposed retrieval methodology is based on the calculation of methane concentration enhancements from pixel-wise estimates of methane transmittance at WV-3 SWIR band 7 (2235–2285 nm), which is positioned at a highly-sensitive methane absorption region. A sensitivity analysis based on end-to-end simulations has helped to understand retrieval errors and detection limits. The results have shown the good performance of WV-3 for methane mapping, especially over bright and homogeneous areas. The potential of WV-3 for methane mapping has been further tested with real data, which has led to the detection of 26 independent point emissions over different methane hotspot regions such as the O&G extraction fields in Algeria and Turkmenistan, and the Shanxi coal mining region in China. In particular, the detection of very small leaks (< 100 kg/h) from oil pipelines in Turkmenistan shows the game-changing potential of WV-3 to map industrial methane emissions from space.