G. Kim, Sang-Gyu Cho, Chanhwi Shin, Pureun Jeon, Seoyeong Lee, Hanlim Kim, G. Min, Juseok Yang, Kyungjae Yoon
{"title":"用棒材跌落冲击系统进行岩石节理直接剪切性能的实验室试验","authors":"G. Kim, Sang-Gyu Cho, Chanhwi Shin, Pureun Jeon, Seoyeong Lee, Hanlim Kim, G. Min, Juseok Yang, Kyungjae Yoon","doi":"10.56952/arma-2022-0734","DOIUrl":null,"url":null,"abstract":"For an underground excavation at depth in highly stressful conditions, it is important to mitigate the risk of stress-induced failure, e.g., rockburst, and improve miner safety concerning the stability of underground workplaces and the prevention of fatalities. In general, the cause of rockburst is classified into three categories: strainburst due to stress-induced fracturing, rock ejection by seismic energy transfer, and rockfall associated with mining-induced seismicity. In this study, the Split Hopkinson Pressure Bar (SHPB) modified configuration of bar drop apparatus was developed by attaching a direct shear test box and a long bar. As a result, the modified bar drop system enabled to replicate and control of a seismic velocity that was an incident on the joint rock surfaces installed in the direct shear testing box. The long bar installed in the modified bar drop system provides a longer stress wavelength to overcome the relatively shorter duration of the stress waves in the SHPB system. The dynamic shear test on the jointed rock samples using the bar drop apparatus also provided the information to estimate the rock joint shear strengths.","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory Test on Direct Shear Behavior of Rock Joints Using a Bar Drop Impact System\",\"authors\":\"G. Kim, Sang-Gyu Cho, Chanhwi Shin, Pureun Jeon, Seoyeong Lee, Hanlim Kim, G. Min, Juseok Yang, Kyungjae Yoon\",\"doi\":\"10.56952/arma-2022-0734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an underground excavation at depth in highly stressful conditions, it is important to mitigate the risk of stress-induced failure, e.g., rockburst, and improve miner safety concerning the stability of underground workplaces and the prevention of fatalities. In general, the cause of rockburst is classified into three categories: strainburst due to stress-induced fracturing, rock ejection by seismic energy transfer, and rockfall associated with mining-induced seismicity. In this study, the Split Hopkinson Pressure Bar (SHPB) modified configuration of bar drop apparatus was developed by attaching a direct shear test box and a long bar. As a result, the modified bar drop system enabled to replicate and control of a seismic velocity that was an incident on the joint rock surfaces installed in the direct shear testing box. The long bar installed in the modified bar drop system provides a longer stress wavelength to overcome the relatively shorter duration of the stress waves in the SHPB system. The dynamic shear test on the jointed rock samples using the bar drop apparatus also provided the information to estimate the rock joint shear strengths.\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-0734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-0734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laboratory Test on Direct Shear Behavior of Rock Joints Using a Bar Drop Impact System
For an underground excavation at depth in highly stressful conditions, it is important to mitigate the risk of stress-induced failure, e.g., rockburst, and improve miner safety concerning the stability of underground workplaces and the prevention of fatalities. In general, the cause of rockburst is classified into three categories: strainburst due to stress-induced fracturing, rock ejection by seismic energy transfer, and rockfall associated with mining-induced seismicity. In this study, the Split Hopkinson Pressure Bar (SHPB) modified configuration of bar drop apparatus was developed by attaching a direct shear test box and a long bar. As a result, the modified bar drop system enabled to replicate and control of a seismic velocity that was an incident on the joint rock surfaces installed in the direct shear testing box. The long bar installed in the modified bar drop system provides a longer stress wavelength to overcome the relatively shorter duration of the stress waves in the SHPB system. The dynamic shear test on the jointed rock samples using the bar drop apparatus also provided the information to estimate the rock joint shear strengths.