小麦转录组组装管道的分析

Natasha Pavlovikj, Kevin Begcy, S. Behera, Malachy T. Campbell, H. Walia, J. Deogun
{"title":"小麦转录组组装管道的分析","authors":"Natasha Pavlovikj, Kevin Begcy, S. Behera, Malachy T. Campbell, H. Walia, J. Deogun","doi":"10.1109/BIBM.2016.7822507","DOIUrl":null,"url":null,"abstract":"With advances in next-generation sequencing technologies, transcriptome sequencing has emerged as a powerful tool for performing transcriptome analysis for various organisms. Obtaining draft transcriptome of an organism is a complex multi-stage pipeline with several steps such as data cleaning, error correction and assembly. Based on the analysis performed in this paper, we conclude that the best assembly is produced when the error correction method is used with Velvet Oases and the “multi-k” strategy that combines the 5 k-mer assemblies with highest N50. Our results provide valuable insight for designing good de novo transcriptome assembly pipeline for a given application.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of transcriptome assembly pipelines for wheat\",\"authors\":\"Natasha Pavlovikj, Kevin Begcy, S. Behera, Malachy T. Campbell, H. Walia, J. Deogun\",\"doi\":\"10.1109/BIBM.2016.7822507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With advances in next-generation sequencing technologies, transcriptome sequencing has emerged as a powerful tool for performing transcriptome analysis for various organisms. Obtaining draft transcriptome of an organism is a complex multi-stage pipeline with several steps such as data cleaning, error correction and assembly. Based on the analysis performed in this paper, we conclude that the best assembly is produced when the error correction method is used with Velvet Oases and the “multi-k” strategy that combines the 5 k-mer assemblies with highest N50. Our results provide valuable insight for designing good de novo transcriptome assembly pipeline for a given application.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着下一代测序技术的进步,转录组测序已成为对各种生物体进行转录组分析的有力工具。获得生物转录组草图是一个复杂的多阶段流程,包括数据清理、错误纠正和组装等几个步骤。基于本文的分析,我们得出结论,当误差校正方法与Velvet Oases和“multi-k”策略结合使用5个具有最高N50的k-mer组件时,可以产生最佳组装。我们的结果为设计一个好的转录组组装管道提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of transcriptome assembly pipelines for wheat
With advances in next-generation sequencing technologies, transcriptome sequencing has emerged as a powerful tool for performing transcriptome analysis for various organisms. Obtaining draft transcriptome of an organism is a complex multi-stage pipeline with several steps such as data cleaning, error correction and assembly. Based on the analysis performed in this paper, we conclude that the best assembly is produced when the error correction method is used with Velvet Oases and the “multi-k” strategy that combines the 5 k-mer assemblies with highest N50. Our results provide valuable insight for designing good de novo transcriptome assembly pipeline for a given application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1