二乙基二硫代氨基甲酸铜对培养血管内皮细胞金属硫蛋白异构体的诱导作用。

T. Fujie, Yukino Segawa, Eiko Yoshida, T. Kimura, Y. Fujiwara, C. Yamamoto, M. Satoh, H. Naka, T. Kaji
{"title":"二乙基二硫代氨基甲酸铜对培养血管内皮细胞金属硫蛋白异构体的诱导作用。","authors":"T. Fujie, Yukino Segawa, Eiko Yoshida, T. Kimura, Y. Fujiwara, C. Yamamoto, M. Satoh, H. Naka, T. Kaji","doi":"10.2131/jts.41.225","DOIUrl":null,"url":null,"abstract":"Metallothionein (MT) plays a central role in cellular defense against heavy metals and oxidative stress. Since the induction of MT requires the activation of metal response element (MRE)-binding transcription factor-1 (MTF-1) by binding of zinc ions, inorganic zinc is regarded as a typical MT inducer. However, in a previous report, we showed that inorganic zinc could not induce MT in vascular endothelial cells. While it is suggested that endothelial MT presents mechanisms different from those of other cell types, these remain unclear. In this study, we investigated whether the induction of endothelial MT expression involves the Nrf2-ARE pathway using copper(II) bis(diethyldithiocarbamate), termed Cu10, using a culture system of bovine aortic endothelial cells. Cu10 induced MT-1/2 protein expression and increased the expression of mRNAs for MT-1A, MT-1E, and MT-2, MT isoforms expressed in the cells. Cu10 activated not only the MTF-1-MRE, but also the Nrf2-ARE pathway. MTF-1 knockdown resulted in the repression of Cu10-induced MT-1 and -2 expression. Cu10-induced MT-1 expression was down-regulated by Nrf2 knockdown. However, MT-2 expression was not affected by Nrf2 knockdown. These results suggest that the expression of endothelial MT is up-regulated by the Nrf2-ARE pathway as well as by the MTF-1-MRE pathway. Moreover, MT-1 regulation mechanisms differ from that of MT-2. Specifically, the present data support the hypothesis that MT-1 participates in the biological defense system, while MT-2 mainly regulates intracellular zinc metabolism.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells.\",\"authors\":\"T. Fujie, Yukino Segawa, Eiko Yoshida, T. Kimura, Y. Fujiwara, C. Yamamoto, M. Satoh, H. Naka, T. Kaji\",\"doi\":\"10.2131/jts.41.225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallothionein (MT) plays a central role in cellular defense against heavy metals and oxidative stress. Since the induction of MT requires the activation of metal response element (MRE)-binding transcription factor-1 (MTF-1) by binding of zinc ions, inorganic zinc is regarded as a typical MT inducer. However, in a previous report, we showed that inorganic zinc could not induce MT in vascular endothelial cells. While it is suggested that endothelial MT presents mechanisms different from those of other cell types, these remain unclear. In this study, we investigated whether the induction of endothelial MT expression involves the Nrf2-ARE pathway using copper(II) bis(diethyldithiocarbamate), termed Cu10, using a culture system of bovine aortic endothelial cells. Cu10 induced MT-1/2 protein expression and increased the expression of mRNAs for MT-1A, MT-1E, and MT-2, MT isoforms expressed in the cells. Cu10 activated not only the MTF-1-MRE, but also the Nrf2-ARE pathway. MTF-1 knockdown resulted in the repression of Cu10-induced MT-1 and -2 expression. Cu10-induced MT-1 expression was down-regulated by Nrf2 knockdown. However, MT-2 expression was not affected by Nrf2 knockdown. These results suggest that the expression of endothelial MT is up-regulated by the Nrf2-ARE pathway as well as by the MTF-1-MRE pathway. Moreover, MT-1 regulation mechanisms differ from that of MT-2. Specifically, the present data support the hypothesis that MT-1 participates in the biological defense system, while MT-2 mainly regulates intracellular zinc metabolism.\",\"PeriodicalId\":231048,\"journal\":{\"name\":\"The Journal of toxicological sciences\",\"volume\":\"332 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of toxicological sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.41.225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of toxicological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2131/jts.41.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

金属硫蛋白(MT)在细胞防御重金属和氧化应激中起着核心作用。由于MT的诱导需要通过锌离子的结合激活金属响应元件(MRE)结合转录因子-1 (MTF-1),因此无机锌被认为是典型的MT诱导剂。然而,在之前的报道中,我们发现无机锌不能诱导血管内皮细胞MT。虽然内皮细胞MT的机制不同于其他细胞类型,但这些机制尚不清楚。在这项研究中,我们使用牛主动脉内皮细胞培养系统,研究了铜(II)二(二乙基二硫代氨基甲酸铜)(称为Cu10)诱导内皮细胞MT表达是否涉及Nrf2-ARE途径。Cu10诱导MT-1/2蛋白表达,增加细胞中表达的MT- 1a、MT- 1e和MT-2亚型mrna的表达。Cu10不仅激活MTF-1-MRE通路,还激活Nrf2-ARE通路。MTF-1敲低导致cu10诱导的MT-1和-2表达受到抑制。cu10诱导的MT-1表达通过敲低Nrf2下调。然而,MT-2的表达不受Nrf2敲低的影响。这些结果表明内皮细胞MT的表达可通过Nrf2-ARE途径和MTF-1-MRE途径上调。此外,MT-1的调控机制与MT-2不同。具体而言,目前的数据支持MT-1参与生物防御系统,而MT-2主要调节细胞内锌代谢的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells.
Metallothionein (MT) plays a central role in cellular defense against heavy metals and oxidative stress. Since the induction of MT requires the activation of metal response element (MRE)-binding transcription factor-1 (MTF-1) by binding of zinc ions, inorganic zinc is regarded as a typical MT inducer. However, in a previous report, we showed that inorganic zinc could not induce MT in vascular endothelial cells. While it is suggested that endothelial MT presents mechanisms different from those of other cell types, these remain unclear. In this study, we investigated whether the induction of endothelial MT expression involves the Nrf2-ARE pathway using copper(II) bis(diethyldithiocarbamate), termed Cu10, using a culture system of bovine aortic endothelial cells. Cu10 induced MT-1/2 protein expression and increased the expression of mRNAs for MT-1A, MT-1E, and MT-2, MT isoforms expressed in the cells. Cu10 activated not only the MTF-1-MRE, but also the Nrf2-ARE pathway. MTF-1 knockdown resulted in the repression of Cu10-induced MT-1 and -2 expression. Cu10-induced MT-1 expression was down-regulated by Nrf2 knockdown. However, MT-2 expression was not affected by Nrf2 knockdown. These results suggest that the expression of endothelial MT is up-regulated by the Nrf2-ARE pathway as well as by the MTF-1-MRE pathway. Moreover, MT-1 regulation mechanisms differ from that of MT-2. Specifically, the present data support the hypothesis that MT-1 participates in the biological defense system, while MT-2 mainly regulates intracellular zinc metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dose- and time-dependent systemic adverse reactions of sodium carboxy methyl cellulose after intraperitoneal application in rats. Selenium uptake through cystine transporter mediated by glutathione conjugation. A monkey model of acetaminophen-induced hepatotoxicity; phenotypic similarity to human. Melatonin suppresses methamphetamine-triggered endoplasmic reticulum stress in C6 cells glioma cell lines. Effects of reduced food intake for 4 weeks on physiological parameters in toxicity studies in dogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1