大规模非协调多址通用方案的设计

Austin Taghavi, Avinash Vem, J. Chamberland, K. Narayanan
{"title":"大规模非协调多址通用方案的设计","authors":"Austin Taghavi, Avinash Vem, J. Chamberland, K. Narayanan","doi":"10.1109/ISIT.2016.7541318","DOIUrl":null,"url":null,"abstract":"Future wireless access points may have to support sporadic transmissions from a massive number of unattended machines. Recently, there has been a lot of interest in the design of massive uncoordinated multiple access schemes for such systems based on clever enhancements to slotted ALOHA. A close connection has been established between the design of the multiple access scheme and the design of low density generator matrix codes. Based on this connection, optimal multiple access schemes have been designed based on slotted ALOHA and successive interference cancellation, assuming that the number of users in the network is known at the transmitters. In this paper, we extend this work and consider the design of universal uncoordinated multiple access schemes that are agnostic to the number of users in the network. We design Markov chain based transmission policies and numerical results show that substantial improvement to slotted ALOHA is possible.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On the design of universal schemes for massive uncoordinated multiple access\",\"authors\":\"Austin Taghavi, Avinash Vem, J. Chamberland, K. Narayanan\",\"doi\":\"10.1109/ISIT.2016.7541318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future wireless access points may have to support sporadic transmissions from a massive number of unattended machines. Recently, there has been a lot of interest in the design of massive uncoordinated multiple access schemes for such systems based on clever enhancements to slotted ALOHA. A close connection has been established between the design of the multiple access scheme and the design of low density generator matrix codes. Based on this connection, optimal multiple access schemes have been designed based on slotted ALOHA and successive interference cancellation, assuming that the number of users in the network is known at the transmitters. In this paper, we extend this work and consider the design of universal uncoordinated multiple access schemes that are agnostic to the number of users in the network. We design Markov chain based transmission policies and numerical results show that substantial improvement to slotted ALOHA is possible.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

未来的无线接入点可能必须支持来自大量无人值守机器的零星传输。最近,人们对基于槽ALOHA的智能增强的此类系统的大规模非协调多址方案的设计非常感兴趣。多址方案的设计与低密度发生器矩阵码的设计之间建立了密切的联系。在此基础上,假设发射机知道网络中的用户数量,设计了基于有槽ALOHA和连续干扰消除的最优多址方案。在本文中,我们扩展了这项工作,并考虑了与网络中用户数量无关的通用非协调多址方案的设计。我们设计了基于马尔可夫链的传输策略,数值结果表明对开槽ALOHA有很大的改进是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the design of universal schemes for massive uncoordinated multiple access
Future wireless access points may have to support sporadic transmissions from a massive number of unattended machines. Recently, there has been a lot of interest in the design of massive uncoordinated multiple access schemes for such systems based on clever enhancements to slotted ALOHA. A close connection has been established between the design of the multiple access scheme and the design of low density generator matrix codes. Based on this connection, optimal multiple access schemes have been designed based on slotted ALOHA and successive interference cancellation, assuming that the number of users in the network is known at the transmitters. In this paper, we extend this work and consider the design of universal uncoordinated multiple access schemes that are agnostic to the number of users in the network. We design Markov chain based transmission policies and numerical results show that substantial improvement to slotted ALOHA is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
String concatenation construction for Chebyshev permutation channel codes Cyclically symmetric entropy inequalities Near-capacity protograph doubly-generalized LDPC codes with block thresholds On the capacity of a class of dual-band interference channels Distributed detection over connected networks via one-bit quantizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1