{"title":"使用正规方程的刚性形状插值","authors":"William V. Baxter, Pascal Barla, K. Anjyo","doi":"10.1145/1377980.1377993","DOIUrl":null,"url":null,"abstract":"In this paper we provide a new compact formulation of rigid shape interpolation in terms of normal equations, and propose several enhancements to previous techniques. Specifically, we propose 1) a way to improve mesh independence, making the interpolation result less influenced by variations in tessellation, 2) a faster way to make the interpolation symmetric, and 3) simple modifications to enable controllable interpolation. Finally we also identify 4) a failure mode related to large rotations that is easily triggered in practical use, and we present a solution for this as well.","PeriodicalId":204343,"journal":{"name":"International Symposium on Non-Photorealistic Animation and Rendering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Rigid shape interpolation using normal equations\",\"authors\":\"William V. Baxter, Pascal Barla, K. Anjyo\",\"doi\":\"10.1145/1377980.1377993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide a new compact formulation of rigid shape interpolation in terms of normal equations, and propose several enhancements to previous techniques. Specifically, we propose 1) a way to improve mesh independence, making the interpolation result less influenced by variations in tessellation, 2) a faster way to make the interpolation symmetric, and 3) simple modifications to enable controllable interpolation. Finally we also identify 4) a failure mode related to large rotations that is easily triggered in practical use, and we present a solution for this as well.\",\"PeriodicalId\":204343,\"journal\":{\"name\":\"International Symposium on Non-Photorealistic Animation and Rendering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Non-Photorealistic Animation and Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1377980.1377993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1377980.1377993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we provide a new compact formulation of rigid shape interpolation in terms of normal equations, and propose several enhancements to previous techniques. Specifically, we propose 1) a way to improve mesh independence, making the interpolation result less influenced by variations in tessellation, 2) a faster way to make the interpolation symmetric, and 3) simple modifications to enable controllable interpolation. Finally we also identify 4) a failure mode related to large rotations that is easily triggered in practical use, and we present a solution for this as well.