超亮LED作为临床实验室分光光度计光源的评价

Rangga Santoso, D. Titisari, Prastawa Atp, Her Gumiwang Ariswati, L. Lamidi
{"title":"超亮LED作为临床实验室分光光度计光源的评价","authors":"Rangga Santoso, D. Titisari, Prastawa Atp, Her Gumiwang Ariswati, L. Lamidi","doi":"10.35882/jeeemi.v4i1.3","DOIUrl":null,"url":null,"abstract":"Spectrophotometers generally use a halogen lamp as a light source that passes through a filter (wavelength) according to the material to be analyzed. This study aims to analyze the ability of the LED as a light source on a spectrophotometer. In this study, the authors have determined blood sugar parameters as the test material. So that the determination of the wavelength of the LED as a light source must be adjusted to the specifications of the wavelength in the reagent manual procedure used. In the BAV Greiner Glucose Reagent procedure, the allowable wavelength is between 500 - 570 nm with a cuvette thickness of 1 cm. Measured against the reagent blank by the endpoint method. From this reference, the author uses an LED light source with a wavelength of 530 nm, Epistar brand green. The module in this study consisted of a 530 nm LED lamp as a light source, then a lens was added to focus the light beam from the 530 nm LED. The author also adds a Slit / Aperture or it can be called a small hole so that the light passing through is focused at one point of the circle and is passed to the cuvette. The results of the absorption of light will be received by the light sensor (photoresistor) and the data is processed by Arduino and the results are displayed on the display. From the results of this study, the value ranges error from 1% to 3% when a comparative test is carried out with the Analyticon type Biolyzer100 spectrophotometer with 6 different samples and is repeated 5 times each. From these data, it is found that the LED with a wavelength of 530 nm is effective as a light source for checking blood sugar.","PeriodicalId":369032,"journal":{"name":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating of a Super Bright LED As a Spectrophotometer Light Source at The Clinical Laboratory\",\"authors\":\"Rangga Santoso, D. Titisari, Prastawa Atp, Her Gumiwang Ariswati, L. Lamidi\",\"doi\":\"10.35882/jeeemi.v4i1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrophotometers generally use a halogen lamp as a light source that passes through a filter (wavelength) according to the material to be analyzed. This study aims to analyze the ability of the LED as a light source on a spectrophotometer. In this study, the authors have determined blood sugar parameters as the test material. So that the determination of the wavelength of the LED as a light source must be adjusted to the specifications of the wavelength in the reagent manual procedure used. In the BAV Greiner Glucose Reagent procedure, the allowable wavelength is between 500 - 570 nm with a cuvette thickness of 1 cm. Measured against the reagent blank by the endpoint method. From this reference, the author uses an LED light source with a wavelength of 530 nm, Epistar brand green. The module in this study consisted of a 530 nm LED lamp as a light source, then a lens was added to focus the light beam from the 530 nm LED. The author also adds a Slit / Aperture or it can be called a small hole so that the light passing through is focused at one point of the circle and is passed to the cuvette. The results of the absorption of light will be received by the light sensor (photoresistor) and the data is processed by Arduino and the results are displayed on the display. From the results of this study, the value ranges error from 1% to 3% when a comparative test is carried out with the Analyticon type Biolyzer100 spectrophotometer with 6 different samples and is repeated 5 times each. From these data, it is found that the LED with a wavelength of 530 nm is effective as a light source for checking blood sugar.\",\"PeriodicalId\":369032,\"journal\":{\"name\":\"Journal of Electronics, Electromedical Engineering, and Medical Informatics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics, Electromedical Engineering, and Medical Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35882/jeeemi.v4i1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35882/jeeemi.v4i1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分光光度计通常使用卤素灯作为光源,根据要分析的材料通过滤光片(波长)。本研究旨在分析LED在分光光度计上作为光源的能力。在这项研究中,作者确定了血糖参数作为测试材料。因此,确定LED作为光源的波长必须调整到试剂手册程序中使用的波长规格。在BAV Greiner葡萄糖试剂程序中,允许波长在500 - 570nm之间,试管厚度为1cm。用终点法对试剂空白进行测量。从这个参考文献中,作者使用了波长为530nm的LED光源,Epistar品牌绿色。本研究的模块由530nm的LED灯作为光源,然后添加一个透镜来聚焦530nm LED发出的光束。作者还增加了一个狭缝/孔径,或者它可以被称为一个小孔,以便通过的光聚焦在圆的一点上,并通过试管。光的吸收结果将被光传感器(光敏电阻)接收,并由Arduino处理数据,结果显示在显示屏上。从本研究的结果来看,当使用Analyticon型Biolyzer100分光光度计对6种不同的样品进行比较测试时,每种样品重复5次,其值的误差范围为1%至3%。从这些数据中发现,波长为530纳米的LED作为检测血糖的光源是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating of a Super Bright LED As a Spectrophotometer Light Source at The Clinical Laboratory
Spectrophotometers generally use a halogen lamp as a light source that passes through a filter (wavelength) according to the material to be analyzed. This study aims to analyze the ability of the LED as a light source on a spectrophotometer. In this study, the authors have determined blood sugar parameters as the test material. So that the determination of the wavelength of the LED as a light source must be adjusted to the specifications of the wavelength in the reagent manual procedure used. In the BAV Greiner Glucose Reagent procedure, the allowable wavelength is between 500 - 570 nm with a cuvette thickness of 1 cm. Measured against the reagent blank by the endpoint method. From this reference, the author uses an LED light source with a wavelength of 530 nm, Epistar brand green. The module in this study consisted of a 530 nm LED lamp as a light source, then a lens was added to focus the light beam from the 530 nm LED. The author also adds a Slit / Aperture or it can be called a small hole so that the light passing through is focused at one point of the circle and is passed to the cuvette. The results of the absorption of light will be received by the light sensor (photoresistor) and the data is processed by Arduino and the results are displayed on the display. From the results of this study, the value ranges error from 1% to 3% when a comparative test is carried out with the Analyticon type Biolyzer100 spectrophotometer with 6 different samples and is repeated 5 times each. From these data, it is found that the LED with a wavelength of 530 nm is effective as a light source for checking blood sugar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting the Need for Cardiovascular Surgery: A Comparative Study of Machine Learning Models A Comparative Study of Convolutional Neural Network in Detecting Blast Cells for Diagnose Acute Myeloid Leukemia A Comparative Study of Machine Learning Methods for Baby Cry Detection Using MFCC Features Analysis of Multimodal Biosignals during Surprise Conditions Correlates with Psychological Traits Evaluation of two biometric access control systems using the Susceptible-Infected-Recovered model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1