一种新的提高网络搜索排名的查询扩展方法

S. Akuma, Promise Anendah
{"title":"一种新的提高网络搜索排名的查询扩展方法","authors":"S. Akuma, Promise Anendah","doi":"10.5815/ijitcs.2023.01.05","DOIUrl":null,"url":null,"abstract":"Information systems have come a long way in the 21st century, with search engines emerging as the most popular and well-known retrieval systems. Several techniques have been used by researchers to improve the retrieval of relevant results from search engines. One of the approaches employed for improving relevant feedback of a retrieval system is Query Expansion (QE). The challenge associated with this technique is how to select the most relevant terms for the expansion. In this research work, we propose a query expansion technique based on Azak & Deepak's WWQE model. Our extended WWQE technique adopts Candidate Expansion Terms selection with the use of in-links and out-links. The top two relevant Wikipedia articles from the user's initial search were found using a custom search engine over Wikipedia. Following that, we ranked further Wikipedia articles that are semantically connected to the top two Wikipedia articles based on cosine similarity using TF-IDF Vectorizer. The expansion terms were then taken from the top 5 document titles. The results of the evaluation of our methodology utilizing TREC query topics (126-175) revealed that the system with extended features gave ranked results that were 11% better than those from the system with unexpanded queries.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Query Expansion Approach for Improving Web Search Ranking\",\"authors\":\"S. Akuma, Promise Anendah\",\"doi\":\"10.5815/ijitcs.2023.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information systems have come a long way in the 21st century, with search engines emerging as the most popular and well-known retrieval systems. Several techniques have been used by researchers to improve the retrieval of relevant results from search engines. One of the approaches employed for improving relevant feedback of a retrieval system is Query Expansion (QE). The challenge associated with this technique is how to select the most relevant terms for the expansion. In this research work, we propose a query expansion technique based on Azak & Deepak's WWQE model. Our extended WWQE technique adopts Candidate Expansion Terms selection with the use of in-links and out-links. The top two relevant Wikipedia articles from the user's initial search were found using a custom search engine over Wikipedia. Following that, we ranked further Wikipedia articles that are semantically connected to the top two Wikipedia articles based on cosine similarity using TF-IDF Vectorizer. The expansion terms were then taken from the top 5 document titles. The results of the evaluation of our methodology utilizing TREC query topics (126-175) revealed that the system with extended features gave ranked results that were 11% better than those from the system with unexpanded queries.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2023.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息系统在21世纪已经走过了漫长的道路,搜索引擎成为最流行和最知名的检索系统。研究人员已经使用了几种技术来改进从搜索引擎中检索相关结果。查询扩展(Query Expansion, QE)是改进检索系统相关反馈的方法之一。与此技术相关的挑战是如何为展开选择最相关的术语。在本研究中,我们提出了一种基于Azak & Deepak的WWQE模型的查询扩展技术。我们的扩展WWQE技术采用候选展开项选择,并使用内链接和外链接。用户首次搜索的前两篇相关维基百科文章是通过自定义搜索引擎在维基百科上找到的。接下来,我们使用TF-IDF Vectorizer基于余弦相似度对语义上与前两篇维基百科文章相关的维基百科文章进行排名。然后从前5个文档标题中选取扩展术语。利用TREC查询主题(126-175)对我们的方法进行评估的结果显示,具有扩展特征的系统给出的排名结果比具有未扩展查询的系统的排名结果高出11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Query Expansion Approach for Improving Web Search Ranking
Information systems have come a long way in the 21st century, with search engines emerging as the most popular and well-known retrieval systems. Several techniques have been used by researchers to improve the retrieval of relevant results from search engines. One of the approaches employed for improving relevant feedback of a retrieval system is Query Expansion (QE). The challenge associated with this technique is how to select the most relevant terms for the expansion. In this research work, we propose a query expansion technique based on Azak & Deepak's WWQE model. Our extended WWQE technique adopts Candidate Expansion Terms selection with the use of in-links and out-links. The top two relevant Wikipedia articles from the user's initial search were found using a custom search engine over Wikipedia. Following that, we ranked further Wikipedia articles that are semantically connected to the top two Wikipedia articles based on cosine similarity using TF-IDF Vectorizer. The expansion terms were then taken from the top 5 document titles. The results of the evaluation of our methodology utilizing TREC query topics (126-175) revealed that the system with extended features gave ranked results that were 11% better than those from the system with unexpanded queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1