融合语音的视听特征

Hao Pan, Zhi-Pei Liang, Thomas S. Huang
{"title":"融合语音的视听特征","authors":"Hao Pan, Zhi-Pei Liang, Thomas S. Huang","doi":"10.1109/ICIP.2000.899333","DOIUrl":null,"url":null,"abstract":"In this paper, the audio and visual features of speech are integrated using a novel fused-HMM. We assume that the two sets of features may have different data rates and duration. Hidden Markov models (HMMs) are first used to model them separately, and then a general Bayesian fusion method, which is optimal in the maximum entropy sense, is employed to fuse them together. Particularly, an efficient learning algorithm is introduced. Instead of maximizing the joint likelihood of the fuse-HMM, the learning algorithm maximizes the two HMMs separately, and then fuses the HMMs together. In addition, an inference algorithm is proposed. We have tested the proposed method by person verification experiments. Results show that the proposed method significantly reduces the recognition error rates as compared to the unimodal HMMs and the loosely-coupled fusion model.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"28 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fusing audio and visual features of speech\",\"authors\":\"Hao Pan, Zhi-Pei Liang, Thomas S. Huang\",\"doi\":\"10.1109/ICIP.2000.899333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the audio and visual features of speech are integrated using a novel fused-HMM. We assume that the two sets of features may have different data rates and duration. Hidden Markov models (HMMs) are first used to model them separately, and then a general Bayesian fusion method, which is optimal in the maximum entropy sense, is employed to fuse them together. Particularly, an efficient learning algorithm is introduced. Instead of maximizing the joint likelihood of the fuse-HMM, the learning algorithm maximizes the two HMMs separately, and then fuses the HMMs together. In addition, an inference algorithm is proposed. We have tested the proposed method by person verification experiments. Results show that the proposed method significantly reduces the recognition error rates as compared to the unimodal HMMs and the loosely-coupled fusion model.\",\"PeriodicalId\":193198,\"journal\":{\"name\":\"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)\",\"volume\":\"28 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2000.899333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.899333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文采用一种新颖的融合隐马尔可夫模型,将语音的视听特征融合在一起。我们假设这两组特征可能具有不同的数据速率和持续时间。首先利用隐马尔可夫模型(hmm)对二者分别建模,然后利用最大熵意义上最优的通用贝叶斯融合方法将二者融合在一起。特别介绍了一种高效的学习算法。该学习算法不是最大化融合hmm的联合似然,而是分别最大化两个hmm,然后将hmm融合在一起。此外,还提出了一种推理算法。我们通过人体验证实验对所提出的方法进行了验证。结果表明,与单峰hmm模型和松耦合融合模型相比,该方法显著降低了识别错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusing audio and visual features of speech
In this paper, the audio and visual features of speech are integrated using a novel fused-HMM. We assume that the two sets of features may have different data rates and duration. Hidden Markov models (HMMs) are first used to model them separately, and then a general Bayesian fusion method, which is optimal in the maximum entropy sense, is employed to fuse them together. Particularly, an efficient learning algorithm is introduced. Instead of maximizing the joint likelihood of the fuse-HMM, the learning algorithm maximizes the two HMMs separately, and then fuses the HMMs together. In addition, an inference algorithm is proposed. We have tested the proposed method by person verification experiments. Results show that the proposed method significantly reduces the recognition error rates as compared to the unimodal HMMs and the loosely-coupled fusion model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust shape tracking in the presence of cluttered background Symmetric region growing Joint halftoning and watermarking A deformable template model based on fuzzy alignment algorithm Region-based scanning for image compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1