{"title":"先进的智能健康建议,提供信息丰富的摘要,以促进治疗决策","authors":"Yi-Hung Liu, Sheng-Fong Chen","doi":"10.1108/el-02-2023-0050","DOIUrl":null,"url":null,"abstract":"\nPurpose\nWhether automatically generated summaries of health social media can assist users in appropriately managing their diseases and ensuring better communication with health professionals becomes an important issue. This paper aims to develop a novel deep learning-based summarization approach for obtaining the most informative summaries from online patient reviews accurately and effectively.\n\n\nDesign/methodology/approach\nThis paper proposes a framework to generate summaries that integrates a domain-specific pre-trained embedding model and a deep neural extractive summary approach by considering content features, text sentiment, review influence and readability features. Representative health-related summaries were identified, and user judgements were analysed.\n\n\nFindings\nExperimental results on the three real-world health forum data sets indicate that awarding sentences without incorporating all the adopted features leads to declining summarization performance. The proposed summarizer significantly outperformed the comparison baseline. User judgement through the questionnaire provides realistic and concrete evidence of crucial features that remarkably influence patient forum review summaries.\n\n\nOriginality/value\nThis study contributes to health analytics and management literature by exploring users’ expressions and opinions through the health deep learning summarization model. The research also developed an innovative mindset to design summarization weighting methods from user-created content on health topics.\n","PeriodicalId":330882,"journal":{"name":"Electron. Libr.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced intelligent health advice with informative summaries to facilitate treatment decision-making\",\"authors\":\"Yi-Hung Liu, Sheng-Fong Chen\",\"doi\":\"10.1108/el-02-2023-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nWhether automatically generated summaries of health social media can assist users in appropriately managing their diseases and ensuring better communication with health professionals becomes an important issue. This paper aims to develop a novel deep learning-based summarization approach for obtaining the most informative summaries from online patient reviews accurately and effectively.\\n\\n\\nDesign/methodology/approach\\nThis paper proposes a framework to generate summaries that integrates a domain-specific pre-trained embedding model and a deep neural extractive summary approach by considering content features, text sentiment, review influence and readability features. Representative health-related summaries were identified, and user judgements were analysed.\\n\\n\\nFindings\\nExperimental results on the three real-world health forum data sets indicate that awarding sentences without incorporating all the adopted features leads to declining summarization performance. The proposed summarizer significantly outperformed the comparison baseline. User judgement through the questionnaire provides realistic and concrete evidence of crucial features that remarkably influence patient forum review summaries.\\n\\n\\nOriginality/value\\nThis study contributes to health analytics and management literature by exploring users’ expressions and opinions through the health deep learning summarization model. The research also developed an innovative mindset to design summarization weighting methods from user-created content on health topics.\\n\",\"PeriodicalId\":330882,\"journal\":{\"name\":\"Electron. Libr.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Libr.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/el-02-2023-0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Libr.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/el-02-2023-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced intelligent health advice with informative summaries to facilitate treatment decision-making
Purpose
Whether automatically generated summaries of health social media can assist users in appropriately managing their diseases and ensuring better communication with health professionals becomes an important issue. This paper aims to develop a novel deep learning-based summarization approach for obtaining the most informative summaries from online patient reviews accurately and effectively.
Design/methodology/approach
This paper proposes a framework to generate summaries that integrates a domain-specific pre-trained embedding model and a deep neural extractive summary approach by considering content features, text sentiment, review influence and readability features. Representative health-related summaries were identified, and user judgements were analysed.
Findings
Experimental results on the three real-world health forum data sets indicate that awarding sentences without incorporating all the adopted features leads to declining summarization performance. The proposed summarizer significantly outperformed the comparison baseline. User judgement through the questionnaire provides realistic and concrete evidence of crucial features that remarkably influence patient forum review summaries.
Originality/value
This study contributes to health analytics and management literature by exploring users’ expressions and opinions through the health deep learning summarization model. The research also developed an innovative mindset to design summarization weighting methods from user-created content on health topics.