如何解释补丁:开源项目中补丁解释的实证研究

Jingjing Liang, Yaozong Hou, Shurui Zhou, Junjie Chen, Y. Xiong, Gang Huang
{"title":"如何解释补丁:开源项目中补丁解释的实证研究","authors":"Jingjing Liang, Yaozong Hou, Shurui Zhou, Junjie Chen, Y. Xiong, Gang Huang","doi":"10.1109/ISSRE.2019.00016","DOIUrl":null,"url":null,"abstract":"Abstract-Bugs are inevitable in software development and maintenance processes. Recently a lot of research efforts have been devoted to automatic program repair, aiming to reduce the efforts of debugging. However, since it is difficult to ensure that the generated patches meet all quality requirements such as correctness, developers still need to review the patch. In addition, current techniques produce only patches without explanation, making it difficult for the developers to understand the patch. Therefore, we believe a more desirable approach should generate not only the patch but also an explanation of the patch. To generate a patch explanation, it is important to first understand how patches were explained. In this paper, we explored how developers explain their patches by manually analyzing 300 merged bug-fixing pull requests from six projects on GitHub. Our contribution is twofold. First, we build a patch explanation model, which summarizes the elements in a patch explanation, and corresponding expressive forms. Second, we conducted a quantitative analysis to understand the distributions of elements, and the correlation between elements and their expressive forms.","PeriodicalId":254749,"journal":{"name":"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"How to Explain a Patch: An Empirical Study of Patch Explanations in Open Source Projects\",\"authors\":\"Jingjing Liang, Yaozong Hou, Shurui Zhou, Junjie Chen, Y. Xiong, Gang Huang\",\"doi\":\"10.1109/ISSRE.2019.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-Bugs are inevitable in software development and maintenance processes. Recently a lot of research efforts have been devoted to automatic program repair, aiming to reduce the efforts of debugging. However, since it is difficult to ensure that the generated patches meet all quality requirements such as correctness, developers still need to review the patch. In addition, current techniques produce only patches without explanation, making it difficult for the developers to understand the patch. Therefore, we believe a more desirable approach should generate not only the patch but also an explanation of the patch. To generate a patch explanation, it is important to first understand how patches were explained. In this paper, we explored how developers explain their patches by manually analyzing 300 merged bug-fixing pull requests from six projects on GitHub. Our contribution is twofold. First, we build a patch explanation model, which summarizes the elements in a patch explanation, and corresponding expressive forms. Second, we conducted a quantitative analysis to understand the distributions of elements, and the correlation between elements and their expressive forms.\",\"PeriodicalId\":254749,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2019.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在软件开发和维护过程中,bug是不可避免的。为了减少调试的工作量,近年来人们对程序自动修复进行了大量的研究。然而,由于很难确保生成的补丁满足所有的质量要求,例如正确性,开发人员仍然需要审查补丁。此外,目前的技术只产生没有解释的补丁,这使得开发人员很难理解补丁。因此,我们认为更理想的方法不仅应该生成补丁,还应该生成补丁的解释。要生成补丁解释,首先要了解补丁是如何解释的。在本文中,我们探讨了开发人员如何通过手工分析来自GitHub上六个项目的300个合并的bug修复拉取请求来解释他们的补丁。我们的贡献是双重的。首先,我们建立了一个补丁解释模型,总结了补丁解释的要素,以及相应的表达形式。其次,我们进行了定量分析,了解元素的分布,以及元素与表现形式之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to Explain a Patch: An Empirical Study of Patch Explanations in Open Source Projects
Abstract-Bugs are inevitable in software development and maintenance processes. Recently a lot of research efforts have been devoted to automatic program repair, aiming to reduce the efforts of debugging. However, since it is difficult to ensure that the generated patches meet all quality requirements such as correctness, developers still need to review the patch. In addition, current techniques produce only patches without explanation, making it difficult for the developers to understand the patch. Therefore, we believe a more desirable approach should generate not only the patch but also an explanation of the patch. To generate a patch explanation, it is important to first understand how patches were explained. In this paper, we explored how developers explain their patches by manually analyzing 300 merged bug-fixing pull requests from six projects on GitHub. Our contribution is twofold. First, we build a patch explanation model, which summarizes the elements in a patch explanation, and corresponding expressive forms. Second, we conducted a quantitative analysis to understand the distributions of elements, and the correlation between elements and their expressive forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring Performance Bug Patterns from Developer Commits Learning Marked Markov Modulated Poisson Processes for Online Predictive Analysis of Attack Scenarios An Empirical Study of Common Challenges in Developing Deep Learning Applications Evaluation of Anomaly Detection Algorithms Made Easy with RELOAD ISSRE 2019 External Reviewers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1