Christopher Huth, René Guillaume, P. Duplys, K. Velmurugan, T. Güneysu
{"title":"基于信道的密钥协议能源成本研究","authors":"Christopher Huth, René Guillaume, P. Duplys, K. Velmurugan, T. Güneysu","doi":"10.1145/2995289.2995291","DOIUrl":null,"url":null,"abstract":"Besides security, energy consumption is a major concern for devices in the Internet of Things (IoT). We compare the energy consumption of two key agreement schemes -- Channel-Based Key Agreement (CBKA) and Elliptic Curve Diffie-Hellman (ECDH) -- in the IoT setting, using Wi-Fi as wireless communication interface. While ECDH is a well-studied protocol, CBKA has received attention only in recent years. Several publications proposed CBKA as a low-energy alternative to ECDH, but they did not address the energy cost of communication. For a fair comparison, we implemented the schemes on a 32-bit ARM Cortex M3-based IoT platform and measured the respective energy consumption for computation and communication. Our results show that the limiting factor for CBKA over Wi-Fi is the energy cost of communication, in particular the cost of acquiring the Received Signal Strength Indicator (RSSI) values. Even in an optimal scenario, CBKA must not measure more than ca. 300 RSSI values to be more energy efficient than ECDH. This is at most 1/5 of RSSI values required by CBKA implementations reported in the literature. As an optimization, we present a refined CBKA protocol which can save up to 25% of the energy compared to existing protocols by exploiting inherent data exchanges for entropy extraction.","PeriodicalId":130056,"journal":{"name":"Proceedings of the 6th International Workshop on Trustworthy Embedded Devices","volume":"297 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the Energy Cost of Channel Based Key Agreement\",\"authors\":\"Christopher Huth, René Guillaume, P. Duplys, K. Velmurugan, T. Güneysu\",\"doi\":\"10.1145/2995289.2995291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Besides security, energy consumption is a major concern for devices in the Internet of Things (IoT). We compare the energy consumption of two key agreement schemes -- Channel-Based Key Agreement (CBKA) and Elliptic Curve Diffie-Hellman (ECDH) -- in the IoT setting, using Wi-Fi as wireless communication interface. While ECDH is a well-studied protocol, CBKA has received attention only in recent years. Several publications proposed CBKA as a low-energy alternative to ECDH, but they did not address the energy cost of communication. For a fair comparison, we implemented the schemes on a 32-bit ARM Cortex M3-based IoT platform and measured the respective energy consumption for computation and communication. Our results show that the limiting factor for CBKA over Wi-Fi is the energy cost of communication, in particular the cost of acquiring the Received Signal Strength Indicator (RSSI) values. Even in an optimal scenario, CBKA must not measure more than ca. 300 RSSI values to be more energy efficient than ECDH. This is at most 1/5 of RSSI values required by CBKA implementations reported in the literature. As an optimization, we present a refined CBKA protocol which can save up to 25% of the energy compared to existing protocols by exploiting inherent data exchanges for entropy extraction.\",\"PeriodicalId\":130056,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Trustworthy Embedded Devices\",\"volume\":\"297 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Trustworthy Embedded Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2995289.2995291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Trustworthy Embedded Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2995289.2995291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Besides security, energy consumption is a major concern for devices in the Internet of Things (IoT). We compare the energy consumption of two key agreement schemes -- Channel-Based Key Agreement (CBKA) and Elliptic Curve Diffie-Hellman (ECDH) -- in the IoT setting, using Wi-Fi as wireless communication interface. While ECDH is a well-studied protocol, CBKA has received attention only in recent years. Several publications proposed CBKA as a low-energy alternative to ECDH, but they did not address the energy cost of communication. For a fair comparison, we implemented the schemes on a 32-bit ARM Cortex M3-based IoT platform and measured the respective energy consumption for computation and communication. Our results show that the limiting factor for CBKA over Wi-Fi is the energy cost of communication, in particular the cost of acquiring the Received Signal Strength Indicator (RSSI) values. Even in an optimal scenario, CBKA must not measure more than ca. 300 RSSI values to be more energy efficient than ECDH. This is at most 1/5 of RSSI values required by CBKA implementations reported in the literature. As an optimization, we present a refined CBKA protocol which can save up to 25% of the energy compared to existing protocols by exploiting inherent data exchanges for entropy extraction.