一种确定系统诊断主成分分析模型的新方法

A. Benaicha, G. Mourot, Mohamed Guerfel, K. BenOthman, J. Ragot
{"title":"一种确定系统诊断主成分分析模型的新方法","authors":"A. Benaicha, G. Mourot, Mohamed Guerfel, K. BenOthman, J. Ragot","doi":"10.1109/MED.2010.5547762","DOIUrl":null,"url":null,"abstract":"In this paper, a new method is proposed to determine the structure of PCA models for system diagnosis. This method based on the principle of variable reconstruction determines PCA models in order to optimize detection and isolation of simple and multiple faults affecting redundant or non redundant variables. This new method has been validated by a simulation example of a nonlinear system.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new method for determining PCA models for system diagnosis\",\"authors\":\"A. Benaicha, G. Mourot, Mohamed Guerfel, K. BenOthman, J. Ragot\",\"doi\":\"10.1109/MED.2010.5547762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method is proposed to determine the structure of PCA models for system diagnosis. This method based on the principle of variable reconstruction determines PCA models in order to optimize detection and isolation of simple and multiple faults affecting redundant or non redundant variables. This new method has been validated by a simulation example of a nonlinear system.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种确定系统诊断用主成分分析模型结构的新方法。该方法基于变量重构原理确定主成分分析模型,以优化对影响冗余或非冗余变量的简单和多重故障的检测和隔离。通过一个非线性系统的仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method for determining PCA models for system diagnosis
In this paper, a new method is proposed to determine the structure of PCA models for system diagnosis. This method based on the principle of variable reconstruction determines PCA models in order to optimize detection and isolation of simple and multiple faults affecting redundant or non redundant variables. This new method has been validated by a simulation example of a nonlinear system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy crash avoidance and coordination between multi mobile robots A co-design approach for bilateral teleoperation over hybrid network Self-Scheduled Fuzzy Control of PWM DC-DC Converters An inverse optimality method to solve a class of second order optimal control problems Support Vector Regression for soft sensor design of nonlinear processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1