微重力下火焰传播的不稳定性

L. Oravecz, I. Wichman, S. Olson
{"title":"微重力下火焰传播的不稳定性","authors":"L. Oravecz, I. Wichman, S. Olson","doi":"10.1115/imece1999-1118","DOIUrl":null,"url":null,"abstract":"\n Results from the first part of an experimental study of flame spread instability are presented. The instabilities were investigated in the NASA drop facilities because the particular instabilities being examined were most pronounced in microgravity, when the influences of buoyancy were minimized. The flame front over thin cellulosic samples broke apart into separate flamelets which interacted with one another and oscillated (frequency ∼ 1 Hz). Different heat-sink backings, which were used to promote flame instability and flamelet productions are examined and described. Preliminary experiments in the NASA 5 second drop tower (Zero-G) drop facility are discussed.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Instability of Flame Spread in Microgravity\",\"authors\":\"L. Oravecz, I. Wichman, S. Olson\",\"doi\":\"10.1115/imece1999-1118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Results from the first part of an experimental study of flame spread instability are presented. The instabilities were investigated in the NASA drop facilities because the particular instabilities being examined were most pronounced in microgravity, when the influences of buoyancy were minimized. The flame front over thin cellulosic samples broke apart into separate flamelets which interacted with one another and oscillated (frequency ∼ 1 Hz). Different heat-sink backings, which were used to promote flame instability and flamelet productions are examined and described. Preliminary experiments in the NASA 5 second drop tower (Zero-G) drop facility are discussed.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-1118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了火焰扩散不稳定性实验研究的第一部分结果。这些不稳定性是在NASA的落差设施中进行研究的,因为所研究的特殊不稳定性在微重力环境中最为明显,这时浮力的影响最小。薄纤维样品上的火焰锋分裂成单独的小火焰,它们相互作用并振荡(频率~ 1 Hz)。研究和描述了不同的热沉衬垫,用来促进火焰不稳定性和小火焰的产生。讨论了NASA 5秒落塔(零重力)落设施的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instability of Flame Spread in Microgravity
Results from the first part of an experimental study of flame spread instability are presented. The instabilities were investigated in the NASA drop facilities because the particular instabilities being examined were most pronounced in microgravity, when the influences of buoyancy were minimized. The flame front over thin cellulosic samples broke apart into separate flamelets which interacted with one another and oscillated (frequency ∼ 1 Hz). Different heat-sink backings, which were used to promote flame instability and flamelet productions are examined and described. Preliminary experiments in the NASA 5 second drop tower (Zero-G) drop facility are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1