bug报告的自动聚类

M. Hammad, Ruba Alzyoudi, A. Otoom
{"title":"bug报告的自动聚类","authors":"M. Hammad, Ruba Alzyoudi, A. Otoom","doi":"10.19101/ijacr.2018.839013","DOIUrl":null,"url":null,"abstract":"It is widely accepted that most development cost is spent for maintenance and most of the maintenance cost is spent on comprehension. Maintainers need to understand the current status of the code before updating it. For this reason, they examine pervious change requests and previous code changes to understand how the current code was evolved. The problem that faces them is how to locate related previous change requests that handled a specific feature or topic in the code. Quickly locating previous related change requests help developers to quickly understand the current status of the code and hence reduce the maintenance cost which is our ultimate goal. This paper proposes an automated technique to identify related previous change requests stored in bug reports. The technique is based on clustering bug reports based on their textual similarities. The result of the clustering is disjoint clusters of related bug reports that have common issues, topic or feature. A set of terms is extracted from each cluster, as tags, to help maintainers to understand the issue, topic or feature handled by the bug reports in the cluster. An experimental study is applied and discussed, followed by manual evaluation of the bug reports in the generated clusters.","PeriodicalId":273530,"journal":{"name":"International Journal of Advanced Computer Research","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic clustering of bug reports\",\"authors\":\"M. Hammad, Ruba Alzyoudi, A. Otoom\",\"doi\":\"10.19101/ijacr.2018.839013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is widely accepted that most development cost is spent for maintenance and most of the maintenance cost is spent on comprehension. Maintainers need to understand the current status of the code before updating it. For this reason, they examine pervious change requests and previous code changes to understand how the current code was evolved. The problem that faces them is how to locate related previous change requests that handled a specific feature or topic in the code. Quickly locating previous related change requests help developers to quickly understand the current status of the code and hence reduce the maintenance cost which is our ultimate goal. This paper proposes an automated technique to identify related previous change requests stored in bug reports. The technique is based on clustering bug reports based on their textual similarities. The result of the clustering is disjoint clusters of related bug reports that have common issues, topic or feature. A set of terms is extracted from each cluster, as tags, to help maintainers to understand the issue, topic or feature handled by the bug reports in the cluster. An experimental study is applied and discussed, followed by manual evaluation of the bug reports in the generated clusters.\",\"PeriodicalId\":273530,\"journal\":{\"name\":\"International Journal of Advanced Computer Research\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19101/ijacr.2018.839013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19101/ijacr.2018.839013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人们普遍认为,大部分开发成本花在维护上,而大部分维护成本花在理解上。维护人员需要在更新代码之前了解代码的当前状态。出于这个原因,他们检查以前的更改请求和以前的代码更改,以了解当前代码是如何演变的。他们面临的问题是如何定位处理代码中特定特性或主题的相关先前变更请求。快速定位以前相关的变更请求可以帮助开发人员快速了解代码的当前状态,从而降低维护成本,这是我们的最终目标。本文提出了一种自动化技术来识别存储在bug报告中的相关先前变更请求。该技术基于基于文本相似性的bug报告聚类。聚类的结果是由具有共同问题、主题或特性的相关bug报告组成的不相交的聚类。从每个集群中提取一组术语,作为标签,以帮助维护者理解集群中bug报告所处理的问题、主题或特性。应用并讨论了一项实验研究,然后对生成的集群中的错误报告进行了手动评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic clustering of bug reports
It is widely accepted that most development cost is spent for maintenance and most of the maintenance cost is spent on comprehension. Maintainers need to understand the current status of the code before updating it. For this reason, they examine pervious change requests and previous code changes to understand how the current code was evolved. The problem that faces them is how to locate related previous change requests that handled a specific feature or topic in the code. Quickly locating previous related change requests help developers to quickly understand the current status of the code and hence reduce the maintenance cost which is our ultimate goal. This paper proposes an automated technique to identify related previous change requests stored in bug reports. The technique is based on clustering bug reports based on their textual similarities. The result of the clustering is disjoint clusters of related bug reports that have common issues, topic or feature. A set of terms is extracted from each cluster, as tags, to help maintainers to understand the issue, topic or feature handled by the bug reports in the cluster. An experimental study is applied and discussed, followed by manual evaluation of the bug reports in the generated clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic urban boundary delineation in equatorial regions using SAR imagery: a comprehensive approach with decomposition, morphology, and statistical active contours The barriers and prospects related to big data analytics implementation in public institutions: a systematic review analysis Enhancing data analysis through k-means with foggy centroid selection Hybrid chaotic whale-shark optimization algorithm to improve artificial neural network: application to the skin neglected tropical diseases diagnosis A review and analysis for the text-based classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1