未知异常的渐近最优搜索

Bar Hemo, Kobi Cohen, Qing Zhao
{"title":"未知异常的渐近最优搜索","authors":"Bar Hemo, Kobi Cohen, Qing Zhao","doi":"10.1109/ISSPIT.2016.7886012","DOIUrl":null,"url":null,"abstract":"The problem of detecting an anomalous process over multiple processes is considered. We consider a composite hypothesis case, in which the measurements drawn when observing a process follow a common distribution parameterized by an unknown parameter (vector). The unknown parameter belongs to one of two disjoint parameter spaces, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes the expected detection time subject to an error probability constraint. We develop a deterministic search policy to solve the problem and prove its asymptotic optimality (as the error probability approaches zero) when the parameter under the null hypothesis is known. We further provide an explicit upper bound on the error probability for the finite sample regime.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Asymptotically optimal search of unknown anomalies\",\"authors\":\"Bar Hemo, Kobi Cohen, Qing Zhao\",\"doi\":\"10.1109/ISSPIT.2016.7886012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of detecting an anomalous process over multiple processes is considered. We consider a composite hypothesis case, in which the measurements drawn when observing a process follow a common distribution parameterized by an unknown parameter (vector). The unknown parameter belongs to one of two disjoint parameter spaces, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes the expected detection time subject to an error probability constraint. We develop a deterministic search policy to solve the problem and prove its asymptotic optimality (as the error probability approaches zero) when the parameter under the null hypothesis is known. We further provide an explicit upper bound on the error probability for the finite sample regime.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

考虑了在多个进程中检测一个异常进程的问题。我们考虑一种复合假设情况,其中观察过程时绘制的测量值遵循由未知参数(向量)参数化的共同分布。根据进程是否正常,未知参数属于两个不相交的参数空间之一。目标是一种顺序搜索策略,使受错误概率约束的预期检测时间最小化。我们开发了一种确定性搜索策略来解决这个问题,并证明了当零假设下的参数已知时,它的渐近最优性(误差概率趋于零)。我们进一步给出了有限样本区域误差概率的显式上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotically optimal search of unknown anomalies
The problem of detecting an anomalous process over multiple processes is considered. We consider a composite hypothesis case, in which the measurements drawn when observing a process follow a common distribution parameterized by an unknown parameter (vector). The unknown parameter belongs to one of two disjoint parameter spaces, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes the expected detection time subject to an error probability constraint. We develop a deterministic search policy to solve the problem and prove its asymptotic optimality (as the error probability approaches zero) when the parameter under the null hypothesis is known. We further provide an explicit upper bound on the error probability for the finite sample regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informed Split Gradient Non-negative Matrix factorization using Huber cost function for source apportionment An Identity and Access Management approach for SOA Extracting dispersion information from Optical Coherence Tomography images LOS millimeter-wave communication with quadrature spatial modulation An FPGA design for the Two-Band Fast Discrete Hartley Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1