通过平均场近似估计的期望值精度为1/ n:扩展摘要

Nicolas Gast
{"title":"通过平均场近似估计的期望值精度为1/ n:扩展摘要","authors":"Nicolas Gast","doi":"10.1145/3078505.3078523","DOIUrl":null,"url":null,"abstract":"In this paper, we study the accuracy of mean-field approximation. We show that, under general conditions, the expectation of any performance functional converges at rate O(1/N) to its mean-field approximation. Our result applies for finite and infinite-dimensional mean-field models. We provide numerical experiments that demonstrate that this rate of convergence is tight.","PeriodicalId":133673,"journal":{"name":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate: Extended Abstract\",\"authors\":\"Nicolas Gast\",\"doi\":\"10.1145/3078505.3078523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the accuracy of mean-field approximation. We show that, under general conditions, the expectation of any performance functional converges at rate O(1/N) to its mean-field approximation. Our result applies for finite and infinite-dimensional mean-field models. We provide numerical experiments that demonstrate that this rate of convergence is tight.\",\"PeriodicalId\":133673,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078505.3078523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078505.3078523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了平均场近似的精度问题。我们证明,在一般条件下,任何性能泛函的期望以0 (1/N)的速率收敛到它的平均场近似。我们的结果适用于有限维和无限维平均场模型。我们提供了数值实验,证明了这种收敛速度是紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate: Extended Abstract
In this paper, we study the accuracy of mean-field approximation. We show that, under general conditions, the expectation of any performance functional converges at rate O(1/N) to its mean-field approximation. Our result applies for finite and infinite-dimensional mean-field models. We provide numerical experiments that demonstrate that this rate of convergence is tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 5: Towards Efficient and Durable Storage Routing Money, Not Packets: A Tutorial on Internet Economics Accelerating Performance Inference over Closed Systems by Asymptotic Methods Session details: Session 3: Assessing Vulnerability of Large Networks Exploiting Data Longevity for Enhancing the Lifetime of Flash-based Storage Class Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1